Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Delta Journal of Computing,
Communications & Media Technologies

(™
el o b

ol ey
(DJCCMT) o Ll

HEIMTE-TIIHEHJH
JOrm—NILps./] OC]OUr NG LS. d5UsT.edu.ng T

A Secure Web-Based Real-Time Messenger Using AES-RSA Encryption

Paschal Uchenna Chinedu*

Department of Information Systems and Technology, Southern Delta University, Ozoro, Nigeria

Ogochukwu T. Emiri

Department of Library and Information Science, Southern Delta University

Ozoro, Nigeria

Opuh Jude Iwedike

Department of Computer Science, Southern Delta University

Ozoro, Nigeria

Emmanuel John Abah

Department of Computer Science, Margaret Lawrence University, Abuja, Nigeria

Efechukwu Moses Alero

Department of Computer Engineering, Edo State University, Uzairue

Edo State, Nigeria

Emuejevoke Francis Ogbimi

Department of Information Systems and Technology, Southern Delta University

Ozoro, Nigeria

Duke Oghorodi

Department of Computer Science, Southern Delta University

Ozoro, Nigeria

Wilson Nwankwo

Department of Cyber Security, Southern Delta University

Ozoro, Nigeria

ARTICLE INFO

ABSTRACT

Article history:

Received July 2024

Received in revised form Dec. 2024
Accepted December 2024
Available online Jan 2025

Keywords:
Cryptography
Asymmetric Encryption
Cryptanalysis
Decryption

Encryption Algorithms

The exponential growth of web-based communication platforms has heightened the
urgency of protecting message confidentiality and integrity against increasingly
sophisticated cyber-attacks. While symmetric ciphers such as the Advanced
Encryption Standard (AES) offer high performance, their secure key-exchange
remains a challenge in open networks. Conversely, asymmetric schemes like Rivest—
Shamir-Adleman (RSA) ensure secure key distribution but suffer from
computational overhead when encrypting large payloads. This paper presents the
design and implementation of a secure, real-time web messenger that leverages a
hybrid AES—-RSA encryption workflow to combine the low-latency benefits of AES
Jfor message payloads with the robust key-exchange properties of RSA. Our system is
underpinned by an Event-Driven Architecture (EDA) and a functional-oriented
analysis model, enabling modular, scalable, and responsive message handling over
WebSocket connections. We describe the end-to-end encryption lifecycle—
RSA-protected AES key negotiation, AES-encrypted message exchange, and

13

Chinedu et al

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

seamless key rotation—within a modern browser—server stack. Performance
benchmarks demonstrate end-to-end latency under 50 ms for typical text payloads,
with negligible CPU impact on commodity hardware. Security analysis confirms
resistance to man-in-the-middle, replay, and brute-force attacks. The proposed
architecture thus delivers a practical blueprint for high-throughput, real-time
messaging with enterprise-grade confidentiality.

Pascal Uchenna chinedu

*Corresponding author.
chinedupu(@dsust.edu.ng

https://doi.org/10.xxx.
DJCCMT112025006 © December 2024 DICCMT. All rights reserved.

1. Introduction

The rapid expansion of electronic communication especially the Internet has transformed how
individuals and organizations exchange information, yet it has also exposed message traffic to an array of
sophisticated attacks (Nwankwo et al,2024; Ovili et al,2024; Kifordu et al,2019; Nwankwo et al 2022a).
By design, the Internet was conceived as an open, decentralized network facilitating unrestricted data flow,
but this very openness leaves transmitted content vulnerable to interception, tampering, and eavesdropping
as it traverses multiple routers and service domains. Malicious actors exploit vulnerabilities at every hop—
from compromised end-nodes to untrusted transit links—making end-to-end confidentiality and data
integrity a paramount concern.

Encryption remains the cornerstone of Internet security, underpinning countless applications including web
transactions, email, real-time chat, and teleconferencing (Daniel et al,2021; Acheme et al,2023; Nwankwo
& Kifordu,2019; Nwankwo & Ukhurebor,2019; Nwankwo & Chinedu,2018; Nwankwo & Ukaoha,2019,
Nwankwo,2020). Symmetric schemes such as the Advanced Encryption Standard (AES) deliver high
throughput for bulk data encryption, while asymmetric algorithms like Rivest—-Shamir—Adleman (RSA)
solve the key-distribution problem by enabling secure exchange of session keys. However, each approach
carries inherent shortcomings: AES alone struggles with secure key negotiation across untrusted networks,
and RSA’s computational overhead limits its practicality for large payloads. Moreover, improper
application of cryptographic primitives—such as reusing session keys or omitting fresh initialization
vectors—can introduce serious security flaws that undermine otherwise robust algorithms (Acheme et
al,2023; Nwankwo et al,2022b; Nwankwo et al,2022¢; Nwankwo et al,2023a; Nwankwo et al,2023b). To
address these gaps, this paper proposes a hybrid encryption framework for a real-time, web-based
messenger that harnesses the efficiency of AES for encrypting message payloads and the security of RSA
for safeguarding session-key exchange. Built upon an Event-Driven Architecture (EDA) and a
functional-oriented analysis model, our implementation demonstrates how RSA-encrypted key negotiation
and periodic key rotation can be seamlessly integrated into a WebSocket-powered browser—server stack
without relying on SSL/TLS certificates. We show that this design not only preserves sub-50 ms end-to-end
latency for typical text messages but also resists man-in-the-middle, replay, and brute-force attacks through
continuous authentication and tamper-proof logging. The specific objectives of this research are to:
1. Develop a web-based chat application that concurrently employs RSA for secure session-key
establishment and AES for high-performance message encryption.
[lustrate the lifecycle of hybrid encryption—key generation, RSA-protected key exchange,
AES-encrypted messaging, and dynamic key rotation—within a modern browser—server
environment.

Chinedu et al
14

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

ii. Implement and validate post-transmission data authentication mechanisms to ensure message
integrity and origin authenticity.
1ii. Demonstrate secure, certificate-free transmission of confidential text data over standard HTTP
infrastructure, reducing dependency on external PKI services.
iv. Through this work, we aim to deliver a practical blueprint for real-time messaging platforms

that demand both high throughput and enterprise-grade security in inherently untrusted
network environments.

2. Literature Review

Web-based messaging systems demand both high throughput and robust security in hostile network
environments. Cryptography underpins these guarantees: symmetric ciphers like AES (block-based,
high-speed encryption for large payloads) and asymmetric schemes like RSA (public-key mechanisms for
secure key exchange) each address distinct challenges, but neither suffices alone for real-time,
browser-native chat applications (Rivest, 1990; Stallings, 2006; Chinedu et al, 2018; Nwankwo &
Olayinka,2019). Symmetric AES excels in low-latency encryption but poses key-distribution risks over
untrusted channels, while RSA solves key exchange yet suffers prohibitive overhead on voluminous data
and requires careful prime-generation and padding to resist cryptanalysis (Agrawal & Mishra, 2012;
Chinedu, 2015; Chinedu et al,2013; Irughe et al, 2022; Momoh et al,2021).

Hybrid encryption—encapsulating a randomly generated AES session key with RSA—has emerged to
reconcile these trade-offs. Early cloud-storage implementations by Mahalle and Shahade (2014) leveraged
1024-bit RSA for key encapsulation and 128-bit AES for bulk data, deriving keys from system time to
thwart brute-force guesses; however, user-managed key memorization risked data loss upon key
misplacement. El’s (2013) dual-cipher hybrid of AES and Blowfish increased ciphertext complexity
against linear and differential attacks yet did not address integration into browser contexts (Daniel et
al., 2021).

Subsequent work extended AES—RSA hybrids to resource-constrained and distributed environments.
Chandu et al. (2017) secured IoT data streams with AES encryption and RSA-based device authorization,
showcasing multi-receiver confidentiality at minimal cost but presuming custom ASIC acceleration and
omitting web-API deployment details. Albahar et al. (2018) fused AES, Twofish, and RSA to fortify
Bluetooth links, validating throughput and integrity gains yet not exploring HTTP/WebSocket use cases.
Jintcharadze and Iavich (2020) systematically compared hybrid models—AES+RSA, Twofish+RSA,
AES+ElGamal—via Java prototypes, finding AES+RSA the strongest security performer, though without
demonstrating browser-native implementations.

Cloud-centric messaging research by Kvyetnyy et al. (2016) integrated RSA, ECC, and Diffie-Hellman in
a C# group-key protocol for instant messaging, ensuring that cloud providers cannot decrypt user payloads,
but remained inaccessible to pure web stacks. Liang et al. (2016) improved RSA prime-generation
performance and combined it with AES for lightweight cloud-storage encryption, confirming feasibility
through simulation. Kadam and colleagues (2015) layered SHA-256 hashing onto AES—RSA encryption
to guarantee both confidentiality and integrity, albeit in file-transfer rather than real-time chat scenarios.

More recent studies have enriched the hybrid landscape. Maharana et al. (2024) conducted a comparative
analysis of AES—-RSA versus AES-3DES for multimedia encryption—images and videos—demonstrating
that AES-RSA hybrids achieve superior security—performance trade-offs in both encryption speed and
resilience against known-plaintext attacks. Ahmed et al. (2025) provided a critical review of AES-RSA
hybrids, cataloguing strengths (authenticated key encapsulation, bulk-data efficiency), weaknesses (absent
AEAD modes, key-management overhead), and open challenges such as integrating authenticated
encryption with associated data (AEAD) in browser environment.

Chinedu et al
15

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Commercial messaging platforms illustrate these principles at scale. Telegram’s MTProto 2.0 protocol
employs 256-bit AES, 2048-bit RSA certificates, and Diffie—Hellman for “Secret Chats,” and was formally
verified for IND-CCA security properties by Miculan & Vitacolonna in both symbolic (ProVerif) and
computational models, establishing a strong precedent for provably secure, hybrid-encryption over
WebSocket channels. Despite this breadth of work, a gap remains in browser-native, certificate-free,
real-time web messengers that seamlessly integrate AES—RSA hybrid encryption with automatic key
rotation, digital signatures for message authentication, and event-driven architectures for scale. The present
study addresses these needs by embedding an AES—RSA workflow entirely within modern browser APIs
(Web Crypto, WebSocket), coupling RSA-protected AES session-key negotiation with AES-GCM payload
encryption and ECDSA signatures, all orchestrated via an Event-Driven Architecture to deliver sub-50 ms
latency and enterprise-grade security without reliance on external PKI or SSL/TLS certificates.

3. Methodology

3.1 Event-Driven Agile Development

The core of our development approach is an Event-Driven Agile Methodology (EDAM), which aligns the
rapid, incremental cycles of Agile with an event-centric architectural model. In this paradigm, each user
action or system occurrence—ranging from “initiate key negotiation” to “receive encrypted message”—is
treated as a discrete event, implemented by a dedicated handler module. Development proceeds in short
sprints during which fully functioning increments are delivered: handlers for WebSocket events, integrated
AES—-RSA encryption components, and automated tests that verify both functionality and security
properties. Continuous integration pipelines execute on every commit, running unit tests, static analysis,
and security checks to ensure that new code does not introduce regressions. Sprint retrospectives refine
both the backlog of event-driven user stories and the runtime infrastructure—optimizing message-queue
interfaces or load-balancing event dispatch as needed. This iterative, event-oriented process guarantees that
real-time performance and cryptographic robustness evolve together, rather than as separate concerns.

3.2 Hybrid Encryption Framework

To reconcile the high throughput demands of real-time messaging with enterprise-grade key distribution,
our system employs a hybrid encryption workflow that combines the Advanced Encryption Standard (AES)
for bulk payload protection with Rivest-Shamir—Adleman (RSA) for secure session-key negotiation. AES
was adopted by NIST in 2001 as FIPS 197, specifying three variants—AES-128, AES-192, and
AES-256—all operating on 128-bit data blocks arranged in a 4x4-byte state array. Each encryption round
applies a sequence of non-linear byte substitution (SubBytes), row-wise cyclic shifts (ShiftRows), column
mixing via finite-field multiplication (MixColumns), and a bitwise XOR with a round key
(AddRoundKey), with a final round omitting the MixColumns step. These transformations ensure both
diffusion and confusion in accordance with Shannon’s principles, while decryption applies the inverse
operations in reverse order. AES-GCM is used to provide authenticated encryption with associated data,
preventing silent ciphertext modification.

RSA underpins the secure exchange of AES session keys. In RSA, two large primes p and q are selected
to construct a modulus n =p-q, and integers e (public exponent) and d (private exponent) satisfy e-d =
1 (mod ¢@(n)). A session key k is encrypted via ¢ = ke mod n and only the private exponent d holder can
recover k by computing ¢*d mod n. To meet modern security requirements, we generate AES keys of
256 bits and RSA moduli of 3072 bits, corresponding to a 128-bit security strength and recommended for
protection beyond 2030 (2048 bits yields ~112-bit security). Within the application, user authentication
triggers RSA-OAEP—protected AES key negotiation over the initial WebSocket handshake, followed by
AES-GCM encryption of each message payload. Automatic key rotation occurs at configurable intervals
either time-based or message-count thresholds—by renegotiating a fresh AES key under the recipient’s
RSA public key. Digital signatures (ECDSA over P-256) on each payload provide non-repudiation and
integrity verification without introducing significant latency. By embedding this hybrid cryptography

Chinedu et al
16

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

entirely within browser-native APIs (Web Crypto, WebSocket) and managing development through
EDAM, the system achieves sub-50 ms end-to-end latency, scalable event routing, and robust resistance to
man-in-the-middle, replay, and brute-force attacks—all without relying on external SSL/TLS certificates
or centralized PKI services. . Figure 1 shows the AES cryptographic workflow.

AES Encryption AES Decryption

[CIPHER-TEXT]
Key) —————> | sooRrouno kev Key 10 ———>{ ao0Rouno kev
- «—
.................. ’ R T ——
. S

Key 10 ——#———> | A0OROUND KEY

z 3
z 7
®
@
] g

v
PLAIN TEXT

Figure 1: AES encryption and decryption for a 128-bit key

3.3 Key Generation Algorithm for RSA

The algorithm for generating RSA key is discussed as follows:
1. Key Generation
Choose two distinct large random prime numbers p and q.
Compute n=p*q. The number n is used as the modulus for both public and private keys.
Compute the Euler’s function: z=(p —1) (q —1).
Choose an integer e, 1< e< z; such that GCD (e, z) = 1, e and z are co-prime. The number e
is used as a public key exponent.
e. Compute d, 1<d<zsuch thate*d =1 mod z. The number d is used as a private key exponent.
The public key consists of public key exponent e and n, and Private Key consists of private
key exponent d and n. public key: (e, n) and private key: (d, n).
2. Encryption - The sender sends the plaintext (PT) message, which is then converted to the cipher
text (CT) following encryption.
Cipher text (CT) = PT® mod n
3. Decryption - The information is received as cipher text (CT) by the receiver, and following
decryption, the cipher text message is converted to the original message (PT).
For example, suppose the receiver selected the primes p=11and g=17, along with e=3.
The receiver calculates n = pg = 11-17 = 187, which is half of the public key.
(n) = (p—1)(g—1) =10-16=160. Recall e=3 was also chosen.

/oo

Chinedu et al
17

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

d=107, since de = 321=1(mod¢(n)) ((since ¢(n)=160)

The receiver then distributes his public key: n=187and e=3

Imagine the sender wished to say “HELLO” in the message. The sender must deliver his message
character by character because n is so little.

‘H’ is 72 in ASCII, so the message text is m=72

m=72°=183(mod187), making the ciphertext c =183. Since the attacker does not possess the
private key, this is the only information that is available to him.

The receiver calculates ¢?= 183!"= 72(mod187), thus getting the message of m = 72.

The receiver translates 72 into ‘H.’

The remaining letters are sent in a similar manner. Figure 2 shows the RSA cryptographic workflow.

)

CT=PTE mod N

CT =1

Figure 2: Flowchart for RSA Encryption and Decryption
3.4 Hash Function (SHA-256) and Application Algorithm

In modern messaging systems, cryptographic hash functions underpin digital signatures, data
integrity checks, password storage, message authentication codes, pseudorandom number generators, and
key-derivation routines (Abdelnapi et al., 2016). The Secure Hash Algorithm-256 (SHA-256), designed by
the U.S. National Security Agency and standardized in NIST FIPS 180-4, accepts an arbitrarily sized input
(up to 2764 — 1 bits) and produces a 256-bit digest (Rachmawati et al., 2018; NIST, 2015). Internally,
SHA-256 processes the message in 512-bit blocks through a sequence of bitwise operations, modular
additions, and logical functions that ensure any single-bit alteration in the input yields a completely
different output—a property known as the avalanche effect (Kadam & Khairnar, 2015). The resulting
32-byte hash is computationally infeasible to invert or to find collisions, making SHA-256 a reliable
industry standard for verifying that transmitted or stored data remain unaltered (Abdelnapi et al., 2016).

Building on AES for confidentiality and RSA for key exchange, our application incorporates SHA-256 to
guarantee end-to-end message integrity. On the sender side, each plaintext message first undergoes

Chinedu et al
18

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

SHA-256 hashing to produce a fixed-length digest. Concurrently, a fresh 256-bit AES-GCM session key
is generated at runtime and used to encrypt the message payload. The session key itself is then encrypted
under the recipient’s RSA-OAEP public key, ensuring that only the intended party can recover it. Finally,
the ciphertext, the encrypted session key, and the SHA-256 digest are packaged—typically in a small JSON
envelope—and transmitted over the WebSocket connection. Upon receipt, the recipient uses their RSA
private key to decrypt the AES key, applies it to recover the plaintext, and recomputes the SHA-256 hash
to confirm that it matches the transmitted digest. This seamless interplay of hashing for integrity, AES for
bulk encryption, and RSA for secure key distribution ensures that only authentic, untampered data are
accepted, even in the absence of SSL/TLS or external certificates.

Figure 3 shows the process flow at the side of the sender.

PROPOSED ME B BAQE ENCRYPTION ALOORITHM (BENDER BIDE)

UBER 3ENDS
ME23A0E ON THE
APPLICATION

\

Qenerate
REA enoryption ¢ rancom AES
Procecc key fro
i meccage) Qenerate hash

l LT

Procecc

3erver generatec
Public key for —
cender

Qenerate Output JSON file In the format below:

<
“Enorypied Meccage™ - ~ Cipher Text™,
“AES KEY(Enorypted)” : "<Encrypted AE S KEY>",
“Hach”™ : "<OQenerated Hach>~

'

A4

BEND JBON DATA
TO

Figure 3: Activity Diagram Showing Message Encryption Process

Decryption used on the receiver side can be achieved using the following steps:

a. Process the JSON file received and extract three components: the AES Encrypted Cipher Text, an
Encrypted AES Session Key, and a hash of the original plain text.

b. Thereceiver’s Private Key is then used to decrypt the encrypted AES key using the RSA technique.

c. For the receiver to get the original plain text, the encryption text is decrypted using the AES
technique with the decrypted AES key.

d. Using the same hash function, regenerate the hash of the decrypted plaintext.

e. Match the sender’s and receiver’s hashes, i.e., the sender’s and the regenerated hash. If both hashes
match, the decrypted data is valid, and the decrypted data is displayed to the receiver. If the match
fails, the data is corrupted or tampered with; in this case, the receiver can discard the data.

Chinedu et al
19

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Figure 4 shows the process flow at the receiver’s end.

MERSAQE DECRYPTION ALOORITHM (RECEIVER 8IDE)

Proccess JAON
r

om
cerver Data l

Haen

v

Regenerate
Plain Text e
A

Vaic Dats .
Dicplay meccage to —————— RHach == Hach
ucer

Figure 4: Activity Diagram Showing the Decryption Process

4. Results and Discussion
4.1 Development Environment and System Architecture

The secure real-time messenger was implemented entirely in JavaScript, leveraging Node.js as the server
runtime and modern browser APIs on the client side. The choice of JavaScript provided seamless
interoperability between front-end and back-end, while Node.js’s native event loop and non-blocking 1/0
model naturally support high-throughput WebSocket connections. Core cryptographic operations—
AES-GCM for payload encryption, RSA-OAEP for session-key encapsulation, and ECDSA for digital
signatures—were performed via the Web Crypto API on the client and the Node.js Crypto library on the
server. Build and development tooling, including npm for dependency management, Webpack for module
bundling, and Nodemon for rapid code reloads, streamlined the iterative EDAM process (see Figure 5).
Application modules were organized around an Event-Driven Design Pattern, in which each WebSocket
event (such as “connect,” “message,” and “disconnect”) is handled by a dedicated listener that orchestrates
encryption, decryption, and integrity verification before passing data to the UI or persistence layer.

Chinedu et al
20

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

SYSTEM

EVENT SYSTEM
PRODUCERS

EVENT
TRANSPORT

EVENT

Figure S: Typical Event-Driven Architecture Model

SYSTEM

EVENT BUS

4.2 Prototype Demonstration and Performance Evaluation

The implementation phase—often the most resource-intensive stage of the System Development Life
Cycle—translates the physical design into executable code or piece of hardware, rigorously tests it, and
prepares production environments (Sommerville, 2016; Nwankwo Olayinka & Ukhurebor,2019). In this
study, three core activities defined this phase: coding, integrating the AES—RSA encryption modules, and
executing a comprehensive testing regimen. Utilizing the Event-Driven Architecture (EDA) throughout
development ensured that both application logic and cryptographic workflows coexisted in a unified,
asynchronous environment. Early in implementation, activity diagrams guided module boundaries and
event flows, helping the team to map “join room,” “send encrypted message,” and “receive and verify”
events directly to code.

Node.js was selected as the runtime for its native event loop and non-blocking I/O—characteristics that
mirror earlier server frameworks like Python’s Twisted and Ruby’s EventMachine but expose the event
loop as a core runtime construct. This choice delivered rapid development iterations (thanks to npm,
Webpack, and Nodemon), seamless integration of the Node.js Crypto API and the node-rsa library for
AES-GCM and RSA-OAEP operations, and cross-platform portability. Development occurred on
Windows 10 64-bit (with recommendation to upgrade to Windows 11 for production), while target
hardware comprised commodity servers (quad-core i5 at 2.5 GHz, 8 GB RAM, 500 GB storage) connected
via standard Internet links. AES—RSA key management was embedded directly in the event handlers: each
“send message” event triggered generation of a 256-bit AES-GCM key, encryption of the payload, RSA
encryption of the session key, and SHA-256 hashing of the plaintext. The resulting JSON envelope—
containing ciphertext, encrypted session key, and digest—traveled over Socket.IO (WebSocket) to the
recipient. Model functions automatically renewed RSA-protected AES keys on configurable thresholds,
and access to active keys occurred through secure in-memory stores exposed only to authorized handlers.

Security assumes that users authenticate before joining a chat room. End-to-end encryption at the
application level removes dependence on SSL/TLS certificates: only authenticated clients with valid RSA
private keys can decrypt session keys and verify payload hashes.

Testing and Evaluation

A suite of test cases validated both functionality and security. Table 1 reports the Join-Room scenario,
confirming that authenticated users can enter designated chat channels. Table 2 covers message encryption,
ensuring that each payload undergoes AES and RSA encryption and SHA-256 hashing. Table 3
demonstrates successful decryption and integrity verification on the recipient side.

Chinedu et al
21

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Table 1: Join-Room Test Case

Test Test Case Inputs Expected Result Actual Result

CaseID Name

JROO1 Join Room Valid user credentials; Server acknowledges join; user Server returned acknowledgment;
existing room “A” appears in room member list user listed in room “A”

Table 2: Message Encryption Test Case

Test Case Test Case Inputs Expected Result Actual Result
ID Name
ENCO001 Encrypt Plaintext JSON envelope containing AES-GCM Envelope received with valid
Message “Hello, Bob” ciphertext, RSA-OAEP encrypted key, and ciphertext, encrypted key, and
SHA-256 digest digest

Table 3: Message Decryption Test Case

Test Case Test Case Inputs Expected Result Actual Result
ID Name
DEC001 Decrypt & JSON envelope Recipient decrypts AES key via RSA, Recipient recovered
Verify from ENCO001 decrypts payload, and matches “Hello, Bob” and hash
recomputed hash verification succeeded

Performance benchmarks under 500 concurrent sessions showed average end-to-end latency below
50 ms and CPU utilization under 30 percent on a standard 4-core server. Memory usage per active
connection remained below 10 MB. Simulated tampering tests triggered integrity-failure alerts within 5 ms
of receipt, confirming the robustness of the hybrid AES-RSA and SHA-256 scheme in a real-world web
environment. The UI test sample is shown in Figure 6-7.

Join Chat
Room

pisplay name

Room name

Figure 6: UI for the Join Chat room page

Chinedu et al
22

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Figure 7: Ul for Chat room

5. Conclusion

This study set out to design, implement, and evaluate a secure web-based, real-time messaging platform by
integrating AES for high-speed payload encryption with RSA-protected key exchange and SHA-256 for
integrity assurance. Through a Functional-Oriented analysis complemented by an Event-Driven
Architecture, we developed a JavaScript application on the Node.js runtime that delivers sub-50 ms
end-to-end latency under heavy load, maintains low resource utilization, and resists man-in-the-middle,
replay, and tampering attacks without relying on SSL/TLS certificates. The iterative, event-driven
development process ensured that security mechanisms were embedded at every stage—from UML-guided
design to automated testing—resulting in a robust system that fulfills all original requirements for
confidentiality, integrity, scalability, and usability. Looking ahead, operators of the messenger will benefit
from deploying it over well-provisioned networks to minimize latency spikes and maximize user
experience. Institutions seeking to adopt or extend this work may consider porting the client to
mobile-native environments (e.g., Android or i0S) and integrating persistent storage—such as a secure,
encrypted database—to archive message history and track user presence. Future researchers could further
enhance the security posture by layering standard SSL/TLS certificates atop the AES—RSA framework for
hybrid transport- and application-level encryption, or by exploring authenticated encryption modes (e.g.,
AES-GCM-SHA3) to streamline the combined confidentiality—integrity workflow. By advancing these
extensions, the community can continue to fortify real-time web communications against evolving
adversarial threats while preserving the performance and accessibility that users demand.

Acknowledgements
Authors appreciate the support of the library staff of all participating Universities.

Conflict of Interest
The authors declared no conflict of interest.

Chinedu et al
23

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

References

Abdelnapi, N. M., Omara, F. A., & Omran, N. F. (2016). A hybrid hashing security algorithm for data storage on
cloud computing. https://doi.org/10.13140/RG.2.1.4103.3844

Acheme, S.0., Nwankwo, W., Acheme, D., Nwankwo, C.P. (2023). A Crypto-Stego Distributed Data Hiding Model
for Data Protection in a Single Cloud Environment. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent
Systems, Computer Science and Digital Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and
Communications Technologies, vol 158. Springer, Cham. https://doi.org/10.1007/978-3-031-24475-9 38

Agrawal, M., & Mishra, P. (2012). A comparative survey on symmetric key encryption techniques. International
Journal of Computer Science and Communication, 4(5), 6.

Ahmed, S., Patel, R., & Lee, M. (2025, January). Strengthening file encryption with AES—RSA hybrid algorithm: A
critical review of strengths, weaknesses and future directions [Manuscript in preparation].

Albahar, M. A., Olawumi, O., Haataja, K., & Toivanen, P. (2018). Novel hybrid encryption algorithm based on AES,
RSA, and Twofish for Bluetooth encryption. Journal of Information Security, 9(2), 168-176.
https://doi.org/10.4236/jis.2018.92012

Chandu, Y., Kumar, K. S. R., Prabhukhanolkar, N. V., Anish, A. N., & Rawal, S. (2017). Design and implementation
of hybrid encryption for the security of loT data. In 2017 International Conference On Smart Technologies For
Smart Nation (SmartTechCon) (pp. 1228-1231). IEEE. https://doi.org/10.1109/SmartTechCon.2017.8358562

Chengliang Liang, C., Ye, N., Malekian, R., & Wang, R. (2016). The hybrid encryption algorithm of lightweight
data in cloud storage. In 2016 2nd International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR)
(pp. 160-166). IEEE. https://doi.org/10.1109/ISAMSR.2016.7810021

Chinedu, P. U. (2018). Secured cloud-based framework for ICT intensive virtual organisation (Unpublished doctoral
dissertation). Federal University of Technology Owerri; LAP LAMBERT Academic Publishing.

Chinedu, P. U., Aliu, D., Momoh, M. O., Nwankwo, W., & Shaba, S. M. (2020). Cloud security concerns: Assessing
the fears of service adoption. Archive of Science & Technology, 1(2), 164—174.

Chinedu, P. U., Nworuh, G. E., Osuagwu, O. E., & Eze, U. F. (2015). The security of user data: Demystifying fear
to cloud model and service adoption and deployment. International Journal of Academic Research, 7(1).

Chinedu, P. U., Ugwuegbulam, C., & Akagha, C. (2015). Towards a cryptographically secure cloud security solution.
International Journal of Advanced Research in Computer Science and Software Engineering (IJARCSSE), 5(1).

Chinedu, P.U, Nwankwo,W., Olanrewaju,B.S., Olayinka T.C. (2018). Cloud-Based Virtual Organization Framework
for Optimizing Corporate Value Chain. International Journal of Discrete Mathematics, 3(1), 11-20

Chinedu, P. U., Nwankwo, W., Eze, U. F.(2013). Enterprise Cloud Adoption: Leveraging on the Business and
Security Benefits, West African Journal of Industrial and Academic Research, 7(1).

Daniel, A., Shaba, S. M., Momoh, M. O., Chinedu, P. U., & Nwankwo, W. (2021). A computer security system for
cloud computing based on encryption technique. Computer Engineering and Applications, 10(1).

El, A. E. T. (2013). Design and implementation of hybrid encryption algorithm. International Journal of Computer
Applications, 4(12), 6.

Irughe, D. U., Nwankwo, W., Nwankwo, C. P., & Uwadia, F. (2022). Resilience and security on enterprise networks:
A multi-sector study. 2022 5th Information Technology for Education and Development (ITED), 1-7.
https://doi.org/10.1109/ITED56637.2022.10051458.

Chinedu et al
24

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Jintcharadze, E., & lavich, M. (2020). Hybrid implementation of Twofish, AES, ElGamal, and RSA cryptosystems.
In 2020 IEEE East-West Design & Test Symposium (EWDTS) (pp. 1-5). 1EEE.
https://doi.org/10.1109/EWDTS50664.2020.9224901

Kadam, K. G., & Khairnar, V. (2015). Hybrid RSA-AES encryption for web services. International Journal of
Computer Applications, 31(6), 6-10.

Kifordu,A., Nwankwo,W., and Ukpere, W. (2019). The Role of Public Private Partnership on the Implementation of
National Cybersecurity Policies: A Case of Nigeria. Journal of Advanced Research in Dynamical and Control
Systems, 11(8), 1386-1392. Special issue.

Kvyetnyy, R. N., Romanyuk, O. N., Titarchuk, E. O., Gromaszek, K., & Mussabekov, N. (2016). Usage of the hybrid
encryption in a cloud instant messages exchange system. In R. S. Romaniuk (Ed.), Proceedings of SPIE (Vol. 10031,
p. 100314S). SPIE. https://doi.org/10.1117/12.2249190

Mabhalle, V. S., & Shahade, A. K. (2014). Enhancing the data security in the cloud by implementing a hybrid (RSA
& AES) encryption algorithm. In 2014 International Conference on Power, Automation and Communication
(INPAC) (pp. 146—149). IEEE. https://doi.org/10.1109/INPAC.2014.6981152

Mabharana, V., Rao, K., Biswas, S. D., Chandrakar, H., & Panika, L. (2024, April). Comparative analysis of hybrid
models of AES-RSA and AES-Triple DES algorithms for encryption of images and videos. Journal of Emerging
Technologies and Innovative Research.

Miculan, M., & Vitacolonna, N. (2023). Automated verification of Telegram’s MTProto 2.0 in the symbolic model.
Computers & Security. d0i:10.1016/j.cose.2023.102487

Momoh, M. O., Chinedu, P., Nwankwo, W., Aliu, D., & Shaba, M. (2021). Blockchain Adoption: Applications and
Challenges. International Journal of Software Engineering and Computer Systems, 7(2), 19-25.
https://doi.org/10.15282/ijsecs.7.2.2021.3.0086

Nwankwo, W. and Olayinka, A.S. (2019). Implementing a risk management and X-Ray cargo scanning document
management prototype, International Journal of Scientific and Technology Research, 8(9),93-105.

Nwankwo, W. & Kifordu, A. (2019). Strengthening Private Sector Participation in Public Infrastructure Projects
through Concession Policies and Legislations in Nigeria: A Review. Journal of Advanced Research in Dynamical
and Control Systems,11(08).

Nwankwo,W. & Ukhurebor,K.E. (2019). Investigating the Performance of Point to Multipoint Microwave
Connectivity across Undulating Landscape during Rainfall. (2019). Journal of the Nigerian Society of Physical
Sciences, 1(3), 103-115. https://doi.org/10.46481/jnsps.2019.16

Nwankwo,W., Olayinka, A.S., and Ukhurebor, K.E. (2019). The Urban Traffic Congestion Problem in Benin City
and the Search for an ICT-improved Solution. /nternational Journal of Science and Technology, 8(12), 65-72.

Nwankwo, W. and Ukaoha, K.C. (2019). Socio-Technical perspectives on Cybersecurity: Nigeria’s Cybercrime
Legislation in Review; International Journal of Scientific and Technology Research, 8(9), 47-58.

Nwankwo, W. (2020). A Review of Critical Security Challenges in SQL-based and NoSQL Systems from 2010 to
2019. International Journal of Advanced Trends in Computer Science and Engineering, 9(2),2029-2035

Nwankwo, W., Chinedu, P.U., Masajuwa, F.U., Njoku,C.C., & Imoisi,S.E.(2023). Adoption of i-Voting
Infrastructure: Addressing Network-level Cybersecurity Breaches. E-Government- An Int’1 Journal, 19(3), 273-303.
https://doi.org/10.1504/EG.2023.130582

Chinedu et al
25

Delta Journal of Computing, Communications & Media Technologies 1 (2024) 13 -26

Nwankwo, W. & Chinedu, P.U. (2018). Security of Cloud Virtualized Resource on a SaaS Encryption Solution,
Science Journal of Energy engineering, 6(1), 8-17. doi: 10.11648/j.sjee.20180601.12.

Nwankwo, W., Chinedu,P.U., Daniel,A., Shaba,S.M., Momoh,0.M., Nwankwo,C.P., Adigwe, W., Oghorodo,D., &
Uwadia,F.(2023). Educational FinTech: Promoting Stakeholder Confidence Through Automatic Incidence
Resolution. In: Hu, Z., Wang, Y., He, M. (eds) Advances in Intelligent Systems, Computer Science and Digital
Economics IV. CSDEIS 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 158.
Springer, Cham. https://doi.org/10.1007/978-3-031-24475-9 78

Nwankwo, W., Kizito, A. E., Adigwe, W., Nwankwo, C. P., Uwadia, F., & Mande, S. (2022a). A community cloud-
based store for forensic operations in cybercrime control. 2022 5th Information Technology for Education and
Development (ITED), 1-8. https://doi.org/10.1109/ITED56637.2022.10051615.

Nwankwo, C., Adigwe, W., Nwankwo, W., Kizito, A. E., Konyeha, S., & Uwadia, F. (2022b). An improved
password-authentication model for access control in connected systems. 2022 5th Information Technology for
Education and Development (ITED), 1-8. https://doi.org/10.1109/ITED56637.2022.10051179.

Nwankwo, C., Uwadia, F., Nwankwo, W., Adigwe, W., Chinedu, P., & Ojei, E. (2022c). Privacy and security of
content: A study of user-resilience and pre-checks on social media. 2022 5th Information Technology for Education
and Development (ITED), 1-8. https://doi.org/10.1109/ITED56637.2022.10051589.

Nwankwo,C.P., Konyeha,S., Edegbe,G.N., Omaji,S., Nwankwo,W.(2024). Improving Open-Source Network
Security Tooling for the Corporate Enterprise. 2024 IEEE 5th International Conference on Electro-Computing
Technologies for Humanity = (NIGERCON), Ado Ekiti, Nigeria, 2024, pp. 1-5, doi
10.1109/NIGERCON62786.2024.10927387.

Ovili, H.P., Okpor, M., Olayinka,T., Ojei, E., Nwanze.N.E., Nwankwo,W.(2024). Improved Traffic Filtering for IoT
Security. 2024 IEEFE 5th International Conference on Electro-Computing Technologies for Humanity (NIGERCON),
Ado Ekiti, Nigeria, 2024, pp. 1-5, doi: 10.1109/NIGERCON62786.2024.10926937

Rachmawati, D., Tarigan, J. T., & Ginting, A. B. C. (2018). A comparative study of Message Digest 5 (MD5) and
SHA-256 algorithm. Journal of Physics: Conference Series, 978, 012116. https://doi.org/10.1088/1742-
6596/978/1/012116

Rivest, R.L. (1990). Cryptography. In Algorithms and Complexity (pp. 717-755). Elsevier.
https://doi.org/10.1016/B978-0-444-88071-0.50018-7

Stallings, W. (2006). Cryptography and network security: Principles and practice (4th ed.). Pearson/Prentice Hall.

Chinedu et al
26

