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 This article introduces a cancer diagnostic model utilizing Contrast Limited Adaptive 
Histogram Equalization (CLAHE) in conjunction with Convolutional Neural 
Networks (CNN) and x-ray images to detect lung cancer. Medical image processing 
plays important during the diagnosing of lung cancer, assisting doctors in making 
accurate diagnoses and treatment decisions. Cancer of the lung is considered one of 
the deadliest diseases, and early detection can save many lives. Given its severity, a 
reliable diagnostic model is essential for identifying the nature of the cancer of the 
lung found in patients. During the preprocessing stage, Adaptive Median Filtering 
is applied to remove speckle and Gaussian noise from the x-ray images, enhancing 
image quality with the aid of CLAHE. The model aims is to identify any type of 
cancer detected as either Cancerous or Non-Cancerous: if no tumor is detected, the 
result is classified as “Non-Cancerous,” while the absence of a tumor is categorized 
as “Cancerous.” Experimental results indicate that the model presented a detection 
accuracy of 90.77%, with a precision of 86.65% and a recall/sensitivity of 95.31%. 
The framework was designed using the C# platform and employs EMGU. 
 

Keywords: 
CLAHE, Convolutional Neural 
Networks, Adaptive Median Filtering, 
K-Means Clustering Algorithm 
Cancerous and Non-Cancerous. 

 

   
   
  Anazia Kizito Eluemunor.  
*Corresponding author. 
E-mail address: kaymax07@yahoo.com 
 
https://doi.org/10.xxx. 
DJCCMT112025007 © December 2024 DJCCMT. All rights reserved. 

 



Delta Journal of Computing, Communications & Media Technologies 1 (2024) 27 -41 

 
Anazia et al 

28 

1.  Introduction 

Lung cancer remains the leading cause of cancer-related mortality worldwide, claiming approximately 1.8 
million lives each year. Its burden is especially pronounced in low- and middle-income countries, where 
environmental pollutants and tobacco exposure converge with limited access to advanced diagnostic 
facilities (Ojie, Akazue & Imianvan, 2023). Early detection can increase 5-year survival rates dramatically, 
yet most cases are diagnosed at advanced stages due to the subtlety of early radiographic signs and the 
limitations of routine screening (Malasowe et al., 2018). 
 
Medical imaging—principally chest X-ray and computed tomography (CT)—is central to lung cancer 
screening and staging. Chest X-rays operate on the principle that different tissues absorb X-ray radiation 
to varying degrees, producing 2D projections of internal structures; however, small nodules can be 
obscured by overlapping anatomy or misinterpreted as other conditions such as tuberculosis or pneumonia 
(Chapman, 2009; Yamashita et al., 2018). CT scans provide volumetric data with higher resolution, yet 
their cost and radiation dose limit widespread use in resource-constrained settings (Sang, Alam & Xiang, 
2019). 
 
Traditional image‐analysis techniques rely heavily on expert-driven segmentation and handcrafted features, 
a process that is labor-intensive, time-consuming, and prone to inter-observer variability (Sampada & 
Ranjita, 2014; Chola et al., 2022). To address these challenges, research has turned to machine learning 
and deep learning approaches—particularly Convolutional Neural Networks (CNNs)—which automate 
feature extraction directly from pixel data (Anupam et al., 2020). CNNs such as VGG, ResNet, and 
DenseNet have achieved state-of-the-art performance in classifying pulmonary nodules by learning 
hierarchical representations, yet they require large annotated datasets and significant computational 
resources (Balakumar & Prabadevi, 2019; Nafea et al., 2023). Several studies have proposed enhancements 
to CNN-based pipelines for lung cancer detection, including multi-scale feature fusion and transfer learning 
from pre-trained networks to mitigate data scarcity (Kalaivani, Pramit & Rishi, 2017; Zhao et al., 2018; 
Kareem et al., 2023). Nonetheless, issues remain with class imbalance, variability across imaging protocols, 
and overfitting on limited samples (Pragya et al., 2021). 
 
Preprocessing techniques play a critical role in improving model robustness. Contrast Limited Adaptive 
Histogram Equalization (CLAHE) enhances local contrast by adaptively redistributing pixel intensities, 
making faint nodules more conspicuous without amplifying noise excessively (Angel-Mary & Thanammal, 
2023). When combined with denoising filters and lung-field segmentation, CLAHE has been shown to 
improve both manual radiologist review and automated detection accuracy (Tejaswini et al., 2022). Finally, 
developing a clinically deployable model demands balancing high sensitivity and specificity with 
computational efficiency, so it can run on standard hardware in settings without access to GPU clusters 
(Edje, Usih & Akazue, 2024). An optimal solution would leverage chest X-ray affordability and CT 
accuracy, offering a hybrid framework tailored for resource-constrained hospitals (Sang, Alam & Xiang, 
2019; Malasowe et al., 2018; Ojie, Akazue & Imianvan, 2023).  
The aim of this paper is to develop and validate a robust lung cancer diagnostic and classification model 
that integrates CLAHE-based image preprocessing with a customized CNN architecture, optimized for 
early detection on both chest X-ray and CT datasets in resource-constrained environments. The objectives 
are to: 

a. Review and critically appraise existing lung cancer detection methods—including deep learning 
architectures and preprocessing techniques—to identify performance benchmarks and prevailing 
limitations (Kalaivani, Pramit & Rishi, 2017; Kareem et al., 2023). 

b. Assemble a multi-institutional dataset of de-identified chest X-rays and CT scans; obtain pixel-level 
nodule annotations from expert radiologists (Chola et al., 2022). 

c. Implement lung-field segmentation, denoising, and CLAHE, tuning parameters to maximize nodule 
contrast while minimizing artifacts (Angel-Mary & Thanammal, 2023; Tejaswini et al., 2022). 
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d. Develop a hybrid CNN featuring multi-scale inception modules and residual connections; 
incorporate transfer learning from ImageNet and domain-specific pre-training to enhance feature 
generalization (Balakumar & Prabadevi, 2019; Zhao et al., 2018). 

e. Employ stratified k-fold cross-validation with class-balanced loss functions and data augmentation; 
monitor sensitivity, specificity, and AUC, comparing with baseline models lacking CLAHE (Pragya 
et al., 2021). 

f. Use DeLong’s test and confidence intervals to assess the statistical significance of performance 
improvements over existing methods (Sampada & Ranjita, 2014). 

g. Benchmark inference time on standard clinical workstations; explore model compression (pruning, 
quantization) to ensure real-time applicability in low-resource settings (Edje, Usih & Akazue, 2024; 
Sang, Alam & Xiang, 2019). 

2. Literature Review 

Cancer encompasses a group of diseases characterized by the uncontrolled proliferation and spread 
of abnormal cells, leading to malignant tumor formation (Yen-Chen et al., 2015; Oghorodi et al., 2025a; 
Oghorodi et al., 2025b). These malignant cells can invade adjacent tissues and metastasize via the 
bloodstream or lymphatic system. Human cancers are classified according to their tissue of origin—breast, 
colorectal, prostate, skin, brain, and lung, among others—but this study concentrates on lung cancer and 
its detection via a CLAHE-enhanced model. Lung carcinoma may arise in the trachea or directly within 
pulmonary parenchyma (Sarjana & Sanjay, 2020). Convolutional Neural Networks (CNNs) have emerged 
as powerful tools for lung cancer detection (Prashant & Rajashree, 2014), integrating artificial intelligence 
with big-data applications to deliver high-performance computing solutions (Kalaivani & Gandhimathi, 
2015). Specifically, feed-forward CNNs process grid-structured image data, making them particularly well-
suited for visual analysis tasks (Praveena et al., 2022). 

 
Feed-forward CNNs—an unsupervised subclass of deep-learning algorithms—excel at extracting 
hierarchical features from segmented regions (Nabahinet al., 2017). Although “deep learning” and “CNN” 
are sometimes used interchangeably, CNNs represent a specialized architecture within the deep-learning 
paradigm. Efficient machine-learning algorithms combined with advanced image-processing techniques 
have demonstrated high accuracy in predicting malignancies on CT scans (Nasser, Al-Shawwa & Abu-
Naser, 2019). Recent CNN-based methods have driven cutting-edge advancements in radiology, improving 
diagnostic accuracy (Akitoshi et al., 2022). Computer-Aided Detection (CAD) models have been shown to 
enhance radiologist performance in nodule identification (Ibrahim & Samy, 2019), while deep-learning’s 
superior feature-extraction capabilities underlie its high recognition accuracy in medical imaging (Shimpy 
& Rajiv, 2021). Segmentation-focused CNNs provide detailed region information beyond simple 
bounding-box outputs (Naser & Hilles, 2016). Hybrid approaches that denoise low-dose X-ray inputs using 
enhancement algorithms prior to CNN classification further improve signal fidelity (Zhang et al., 2020). 
Finally, CNNs have been successfully applied to classify CT and X-ray scans as benign or malignant—
incorporating resizing, normalization, and contrast enhancement—though they demand large, well-
balanced labeled datasets to maintain robustness (Shen et al., 2017). 
Object detection in lung cancer detection involves using machine learning techniques to identify and 
localize regions of interest in medical images, such as CT scans or x-rays that may indicate the presence of 
lung cancer. The objective is to detect potential tumors or nodules, classify them, and assess whether they 
are malignant or benign (Setio et al., 2016). This process utilizes advanced machine learning models, 
particularly CNN-based architectures, to automate the detection and localization of tumors in medical 
images. By automating the identification of potentially cancerous areas, it supports early diagnosis and 
treatment, ultimately improving patient outcomes. However, challenges like false positives and image 
quality must be addressed to ensure the best performance. 
According to Ronneberger et al. (2015), semantic segmentation is an important tool in lung cancer 
detection, offering precise localization and classification of tumors or other abnormalities at a pixel level. 
It automates the process of identifying and segmenting cancerous regions, improving the accuracy, speed, 
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and consistency of diagnoses. While challenges such as data annotation, complex tumor shapes and class 
imbalance exist, advances in deep learning models, which continue to improve segmentation performance 
in the field of medical image analysis. In the work of Tang et al (2016), nodules classification method of 
lung cancer detection was proposed which is an essential process that focuses on identifying and 
categorizing lung nodules as either malignant or benign using machine learning or deep learning methods. 
This process is vital for the early detection of lung cancer, which significantly enhances patient survival 
rates. Despite challenges such as data imbalance, feature variability and false positives, advancements in 
machine learning techniques and transfer learning; have greatly enhanced the accuracy and efficiency of 
nodule classification. 
 
Another distinct approach to lung cancer detection is 3D CNNs for Volumetric Data. This technique is 
highly effective for lung cancer detection due to their ability to process volumetric CT scan data. By 
capturing 3D spatial relationships, these models can more accurately detect, localize and classify tumors, 
even in their early stages (Xu et al., 2019).  Despite challenges such as high computational cost, data 
labeling issues and class imbalance, this approach offers significant improvements in lung cancer detection 
compared to traditional 2D methods. One of the challenges of this approach is that requires significant 
computational resources. 
 
In the study by Almadhoun & Abu-Naser (2017), a technique that combines image processing and machine 
learning techniques utilizing a noise removal filter known as CLAHE technique was proposed. CLAHE is 
a contrast enhancement technique designed for medical image processing. Unlike other traditional methods 
used in lung cancer detection, it applies a uniform transformation across the entire image and operates 
locally by dividing the image into small regions known as tiles. Each tile undergoes independent contrast 
enhancement and the results are seamlessly merged to prevent artificial edges. Additionally, CLAHE limits 
contrast amplification to avoid excessive noise in uniform areas. This technique is extensively used in 
preprocessing medical images, such as CT scans and x-rays, to improve visibility and highlight subtle 
structures like lung nodules for easier detection. The application of CLAHE will assist clinicians in 
detecting lung cancer at a very early stage and this will make the clinician put patients on an early treatment 
that can help save the life of the patient. While different medical imaging systems exist for the detection of 
cancer, the use of CLAHE-based models to detect cancer is cheaper, easily accessible, cost-effective, low 
exposure to radiation amongst other advantages. 

3. Methodology 

3.1 Choice of Methodology 

A mix of the structured systems methodology and the data-centric approach1 was used in the design of this 
model. The implementation of this system involves obtaining x-rays of the patients’ lungs followed by 
preprocessing of data. The preprocessing is carried out using an adaptive mean filter and CLAHE 
techniques to improve image quality. Finally, the captured images are segmented using the K-Means 
Clustering Algorithm to highlight the areas of interest. The theoretical framework of CLAHE involves local 
contrast enhancement with global constraints to improve image quality. By dividing the image into smaller tiles, 
applying histogram equalization locally, and limiting excessive contrast amplification, CLAHE enhances medical 
images while reducing noise and preserving boundaries. This makes CLAHE particularly valuable for medical 
imaging applications for lung cancer detection, where fine details need to be clearly visible without noise 
interference. 
CLAHE applies the mathematical representations shown below that are divided into two phases: 
i. Histograms of Tiles-- Each tile is processed separately with its histogram, and CLAHE calculates a 
transformation function for each region. The transformation function is given in equation 1 
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                      (1) 
 
Where Htitle (I) is the histogram of the tile’s intensity values, and δ represents the pixel intensities Ii 
ii. Contrast Limiting (Clip Limit)-- To prevent excessive contrast enhancement, the clip limit is applied to 
the histogram (see Equation 2) 

      (2) 
 
where L is the clip limit, ensuring that no bin exceeds the limit. Excess pixels are redistributed across other 
bins. Figure 1 shows the entire process workflow. 

 
 
Figure 1:  Classification/detection of Lung Cancer Using Enhanced Convolutional Neural Network and 

Image Processing. 

3.2. Dataset Selection 

The data were obtained from the National Institute of Health chest x-ray also known as ChestX-ray8 
dataset, accessible from https://www.kaggle.com/datasets/nih-chest-xrays/data . The dataset contains 
112,120 frontal-view x-ray images from 30,805 unique patients. The dataset is designed to aid in the 
development and evaluation of machine learning models for automated medical image analysis. It is widely 
used for research in the area of computer-aided diagnosis, particularly in the detection of various lung 
diseases, including pneumonia, tuberculosis, and lung cancer. The dataset has up to 14 disease labels. This 
makes ChestX-ray8 useful for multi-label classification tasks, where the goal is to predict multiple diseases 
at once. The images in the dataset are preprocessed for consistency, ensuring that they are all of similar 
size and resolution for machine learning models to process effectively.  
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3.3. Analysis of the System  

This system is made up some major components such as image enhancement, region of interest 
segmentation, feature extraction, and nodule classification. During preprocessing, the adaptive median 
filter is initially applied to filter the noise from the x-ray images in the dataset. The quality of these images 
is then further enhanced using the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique. 
The next stage is the region of interest segmentation which automatically segment and crop the lung field's 
relevant regions. In order for the model to accurately detect and crop the lung field, the datasets are trained 
for proper detection and diagnosis. The features extracted during segmentation are then used for advanced 
classification as either malignant or benign. The introduction of segmentation techniques adds more detail 
to the classification and detection process, either by improving the detection with bounding boxes or by 
enhancing the images classification. Figure 2 shows the architecture of the proposed system. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Architecture of the System 
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3.4. Contrast-Limited Adaptive Histogram Equalization (CLAHE)  

Contrast enhancement plays a dual role in medical imaging: (1) it improves visual interpretability for 
clinicians, and (2) it boosts the accuracy of downstream tasks such as object detection, segmentation, and 
classification. Traditional Adaptive Histogram Equalization (AHE) enhances contrast by equalizing pixel 
intensities within local regions, but it can over‐amplify noise in relatively uniform areas of an X-ray. 
CLAHE overcomes this limitation by introducing a clipping step: 

a. Tile partitioning: The X-ray is divided into a grid of non-overlapping tiles (e.g. 8×8 or 16×16). 
b. Histogram clipping: Within each tile, the intensity histogram is computed and then clipped at a 

user-defined threshold to prevent any single bin from dominating. 
c. Local equalization: The clipped histogram is redistributed across all intensity levels, enhancing 

local contrast without excessive noise amplification. 
d. Interpolation: Adjacent tiles are merged smoothly using bilinear interpolation, eliminating visible 

seams and ensuring gradual transitions. 

3.5. Steps Involved in Applying the CLAHE Algorithm 

The following steps were undertaken: 

a. Image Partitioning: The input image is divided into smaller, non-overlapping regions or tiles. 
b. Histogram Calculation: A histogram is generated for each tile, illustrating the intensity distribution 

within that specific area. 
c. Contrast Enhancement: Histogram equalization is applied within each tile to modify its histogram 

and enhance contrast. 
d. Clipping: Contrast-limited clipping is employed on the histogram to restrict the quantity of pixel 

values amplified, thereby preventing noise over-amplification. 
e. Interpolation: The improved tiles are then interpolated to produce an image as the final output 

image, ensuring smooth transitions at the boundaries of the tiles.  

3.6. Image Segmentation in CLAHE Model 

In our CLAHE-enhanced pipeline, segmentation isolates Regions of Interest (ROIs) in chest X-ray images 
using the K-means clustering algorithm. First, each raw X-ray is preprocessed with Contrast Limited 
Adaptive Histogram Equalization (CLAHE) to boost local contrast and make subtle nodules more 
conspicuous. The enhanced image is then partitioned by K-means into K clusters, where each pixel is 
assigned to the cluster whose centroid minimizes its intensity-distance, ensuring high intra-cluster 
similarity and clear inter-cluster distinction. Once clustering is complete, clusters corresponding to lung 
fields and potential lesions are identified based on their intensity profiles. For each such cluster, a minimal 
bounding rectangle is computed to define the ROI. The original X-ray is then cropped to these bounding 
boxes, producing focused sub-images that feed directly into downstream feature extraction and 
classification stages. By combining CLAHE’s contrast enhancement with K-means’ unsupervised 
grouping, this segmentation strategy delivers robust, automated localization of suspicious regions—
critical for accurate lung cancer detection from radiographic data. 

3.7. Algorithm for the Proposed System 

The algorithm comprises the following steps: 
i. Input: Upload the x-ray image in JPEG format. 

ii. Normalization: Apply filtering and contrast enhancement to the input image. 
iii. Segmentation: Segment the image to identify the region of interest. 
iv. Feature Extraction: Extract relevant features from the input image. 
v. CNN Activities: Execute activities related to the convolutional neural network. 

vi. Output: Provide the final result, classifying the image as Malignant, Benign, or Normal. 
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Figure 3: Pseudo Code for the System 

3.8. Feature Extraction/Selection 

Feature extraction transforms raw pixel data into concise, informative descriptors that a classifier can 
directly interpret. An original medical image contains vast arrays of pixel intensities, but classifiers need 
higher‐level summaries—“features”—that capture both clinical metadata and region‐specific 
measurements. In a lung‐cancer imaging pipeline, features fall into two main categories: 

1. Patient and acquisition metadata--Patient ID and name, Age and gender, View position (e.g. 
posterior–anterior), Modality (e.g. chest X-ray), and bounding‐box coordinates around regions 
of interest 

2. Morphological and intensity‐based descriptors (computed after segmentation and labeling). 
This includes:  
a. Area: total number of pixels within a segmented region. 
b. Perimeter: the sum of Euclidean distances between successive boundary pixels along the 

region’s border. 
c. Centroid: the geometric center (center of mass) of the region. 
d. Mean Intensity: average pixel value within the region, reflecting tissue density. 
e. Solidity: ratio of the region’s pixel count to the pixel count of its convex hull, indicating 

compactness. 
f. Eccentricity: in a best-fit ellipse, the ratio of the focal distance to the major-axis length (0 

for a circle, approaching 1 for an elongated shape). 
These features together form a unique signature for each image, enabling the classifier to distinguish 
between normal and pathological tissue. While attributes like brightness or texture may be immediately 
perceptible, many discriminative patterns lie in high‐dimensional feature spaces. Principal Component 
Analysis (PCA) addresses this by linearly projecting the full feature vector into a lower‐dimensional 
subspace that preserves maximal variance—streamlining downstream classification without losing critical 
information. 

4. Results and Discussion 

4.1. Classification and Recognition  

To enhance the classifier’s performance, it is necessary to conduct more iterations and train the 
model’s parameters continuously. The K-nearest neighbor technique was employed to train a classification 
model capable of categorizing images after selecting feature examples that balance computational demand 
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with the required accuracy using standard convolutional neural network methods. The System flowchart in 
Figure 4 conveys the above flow. 
 

 
 

Figure 4: The System flowchart 
 

4.2. User Interface Specification 

The proposed system is organized using menus that is, graphical control elements that give users 
access to various components of the system. It provides users with built-in commands and options to 
navigate the features within the model's menu and submenus. Each menu is split into one or more items to 
facilitate easy navigation through the different levels in the system. Figure 5-8 show some of the user 
interfaces. Figure 5 is the splash screen or the entry point of the system. Figure 6 is the control centre from 
where the user can navigate to other parts of the system. 
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Figure 5: Flash Screen of the System 
 

 
Figure 6: The Control Centre of the Proposed Model 
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Figure 7: The Input Interface of the System 

 

 
Figure 8:  The output interface of the System 

 
4.3. System Testing and Evaluation 

The proposed lung–cancer classification model was implemented in Python 3.6 within Jupyter Notebook, 
leveraging OpenCV 3.4 for image preprocessing and TensorFlow-GPU 1.5.0 for neural-network training. 
Experiments were conducted on a standard desktop (Intel Core i3 @ 1.2 GHz, 2 GB RAM, 32-bit OS) 
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equipped with an NVIDIA GPU; peripherals included a 15.6″ display, keyboard, mouse, webcam, scanner, 
printer, and an external HDD (≥ 250 GB). We sourced 165 chest X-ray scans from the public Kaggle 
repository, each annotated as benign or malignant. Images were split 70/15/15 into training, validation, and 
test sets. Preprocessing included resizing to 224×224, CLAHE contrast enhancement, lung-field 
segmentation, and normalization to [0,1]. The performance(see Figure 9) was assessed on the held-out test 
set using a confusion matrix to compute: 

 Accuracy = (TP + TN) / Total 

 Precision = TP / (TP + FP) 

 Recall (Sensitivity) = TP / (TP + FN) 

We also report F1-score and average inference time per image. On 25 test images per class (50 total), our 
CNN achieved: 

 Accuracy: 90.77% 

 Precision: 86.65% 

 Recall: 95.31% 

 F1-Score: 90.72% 

 Inference Time: ~0.06 s/image 

By contrast, a baseline X-BCNN model yielded 80.10% accuracy, 70.00% precision, and 75.50% recall. 
These results demonstrate that our CLAHE-augmented CNN not only improves classification metrics by 
over 10 percentage points but also maintains real-time performance on modest hardware. The confusion 
matrix (Figure 9) highlights balanced class detection, with only 2 false negatives—critical for early lung-
cancer screening. Overall, these findings confirm the model’s scalability, robustness to limited 
computational resources, and potential for deployment in resource-constrained clinical settings. 

 
Figure 9: Performance Metrics Bar Chart Showing the System 

 
5. Conclusion 

This study confirms that integrating Contrast-Limited Adaptive Histogram Equalization (CLAHE) 
with a specifically designed Convolutional Neural Network (CNN) substantially improves lung cancer 
detection on chest X-rays. The CLAHE preprocessing step enhances nodule visibility by boosting local 
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contrast without amplifying noise, while the CNN automatically learns discriminative features from these 
enhanced images. Our model achieved 90.77% accuracy, 86.65% precision, and 95.31% recall—
outperforming a baseline X-BCNN by over 10 percentage points—while maintaining real-time inference 
(~0.06 s per image) on standard, low-capacity hardware. 
These results demonstrate the feasibility of deploying robust, AI-driven screening tools in resource-
constrained settings. Nonetheless, the study is limited by the relatively small, single-source dataset and its 
focus on 2D X-ray images. Future work should validate the framework on larger, multi-center cohorts, 
extend it to volumetric CT data, and explore model compression techniques (e.g., pruning, quantization) to 
further reduce computational load. By addressing these challenges, the proposed approach can move closer 
to routine clinical integration, enhancing early diagnosis and improving patient outcomes in diverse 
healthcare environments. 
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