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 This study presents an explainable Random Forest framework for forecasting flood 

probability and evaluates its performance against historical flood records. 

Leveraging a publicly available hydrometeorological dataset sourced from 

kaggle.com, which includes rainfall, river discharge, soil moisture, and topographic 

variables, we preprocessed and partitioned the data into training (70 %) and testing 

(30 %) subsets. A Random Forest classifier was trained to predict binary flood events, 
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and model explainability was achieved using SHAP (SHapley Additive exPlanations) 

values to quantify the contribution of each feature to individual predictions. Model 

performance was assessed through accuracy, precision, recall, F1‐score, and area 

under the ROC curve (AUC), and these metrics were compared to the documented 

occurrence of flood events in the historical record. Our framework achieved an AUC 

of 0.92, with precision and recall exceeding 0.85, indicating robust predictive 

capability. The SHAP‐based analysis revealed that antecedent rainfall, upstream 

discharge, and soil moisture were the most influential predictors, aligning closely 

with known flood‐generation mechanisms. A comparative analysis demonstrated 

that the explainable model not only matches but, in some cases, surpasses the 

baseline skill of traditional statistical approaches documented in regional flood 

reports. Furthermore, case‐study examinations of selected flood events highlight 

how feature contributions evolve in different hydrological contexts, offering 

actionable insights for risk managers. With high predictive accuracy with 

transparent interpretability, this work advances flood forecasting tools for 

operational deployment and supports data‐driven decision‐making in flood risk 

management. 
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1. Introduction 

Nigeria’s 2024 flood season underscored—once again—the country’s deep vulnerability to compound 

hydrological and socio-economic shocks. Between July and November, unusually intense monsoon surges 

and a late, synchronized release of trans-boundary dam water submerged broad swaths of the Niger–Benue 

basin. Official tallies from the National Emergency Management Agency (NEMA) indicate that more than 

1.3 million people across 34 states were directly affected and at least 320 lives were lost (NEMA, 2024; 

OCHA, 2024a). The humanitarian impact was particularly acute in the conflict-torn North-East: Adamawa 

and Borno States registered over 6 000 newly displaced households in just one week (7–13 October) as 

floodwater overtopped settlements already strained by insecurity (OCHA, 2024b). Secondary crises 

quickly followed. Health-cluster partners recorded >500 000 cases of severe acute malnutrition among 

children under five in Borno (Government of Borno State,2024), Adamawa and Yobe between May and 

September (UNICEF, 2024), while local market surveys showed maize prices spiking by 30–45 % above 

the five-year average, amplifying food-insecurity hotspots in hinterland communities. 

 

The southern hydrological picture was no less alarming. Forecast bulletins issued by the Nigeria 

Hydrological Services Agency (NHSA) warned that peak discharges from the Niger–Benue confluence at 

Lokoja would propagate downstream into Edo, Delta, Anambra, Bayelsa, Rivers and Cross River, placing 

low-lying riverine settlements at heightened risk through December (NHSA, 2024). In response, 

emergency task forces pre-positioned supplies, but the sheer breadth of the at-risk corridor made triage 

decisions—where, when and whom to assist first—extraordinarily difficult. That dilemma exposed a 

structural gap in Nigeria’s disaster-risk-reduction arsenal: while seasonal outlooks and satellite rainfall 

estimates are available, operational, locality-scale flood-probability forecasts that also explain why a given 

place is at risk are still embryonic. Current tools either (i) rely on coarse‐resolution hydraulic models that 

demand data seldom measured in real time or (ii) use machine-learning “black boxes” whose opacity erodes 

the trust of emergency managers charged with life-or-death prioritization. 

mailto:chinedupu@dsust.edu.ng
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Against this backdrop, the present study develops a transparent ensemble-learning framework that couples 

the predictive power of Gradient-Boosting and Random-Forest algorithms with SHapley Additive 

exPlanations (SHAP) to deliver both high-skill flood-probability estimates (R² ≈ 0.99) and an intelligible 

hierarchy of the drivers—hydrometeorological, land-use and governance—behind each prediction. 

Leveraging a 50 000-row, 21-feature dataset that blends earth-observation indicators (e.g., monsoon 

intensity, urban-expansion indices, landslide susceptibility) with infrastructure and socio-environmental 

metrics (e.g., drainage quality, political-risk scores), we: 

1. Quantify the individual and joint statistical influence of candidate predictors on binary flood 

outcomes across Nigeria’s diverse hydro-climatic zones; 

2. Benchmark ensemble models against linear and logistic baselines to expose both added skill and 

potential over-fitting traps; 

3. Explain model outputs through global and local SHAP analyses so that decision-makers can trace 

high-risk alerts to actionable levers—slope stabilization, wetland restoration, contingency-fund 

allocation, or governance reform—rather than treat them as inscrutable warnings. 

In aligning state-of-the-art machine learning with the Sendai Framework’s call for people-centred, multi-

hazard early warning systems, the research offers a replicable pathway for data-scarce but flood-prone 

regions to leapfrog from seasonal, qualitative bulletins to near-real-time, feature-transparent risk analytics. 

The remainder of the paper details modelling methodology, results and diagnostic visualizations, and the 

practical implications and limitations before concluding with recommendations for operational uptake and 

future refinement. 

2. Related Works 

2.1 Flood Variables 

Flood forecasting critically depends on a suite of predictor variables that capture the physical processes 

governing flood generation and propagation. These variables are typically grouped into hydrological, 

geographical, meteorological, and human categories, each exerting distinct influences on flood occurrence, 

magnitude, and duration. 

2.1.1 Hydrological Variables 

Hydrological variables describe water flow characteristics within a catchment. Peak discharge, the 

maximum instantaneous flow rate during a flood event, is a primary indicator of flood magnitude and is 

often used to characterize extreme events (Merz & Blöschl, 2005). Flood volume, which integrates 

discharge over the flood duration, provides a measure of the total water mass transported and is closely 

linked to both inundation extent and downstream impacts (Macdonald et al., 2025). Rainfall intensity and 

rainfall duration control the rate and persistence of runoff generation; short, intense storms tend to produce 

flash floods, whereas long-duration rainfall can lead to sustained high flows and riverine flooding (Merz & 

Blöschl, 2005). 

2.1.2 Geographical Variables 

Geographical variables govern how precipitation translates into runoff. Catchment area determines the 

volume of water that contributes to river flow, with larger basins generally producing broader but slower-

developing floods (Merz & Blöschl, 2005). Slope influences flow velocity and peak timing; steeper terrains 

accelerate runoff and enhance flood peaks, whereas gentle slopes promote infiltration and attenuate flows 

(Macdonald et al., 2025). Elevation affects both the potential energy driving flow and the climatic 

conditions (e.g., orographic rainfall) within a basin. Finally, land use—from impervious urban surfaces to 

permeable forest soils—strongly modulates infiltration and runoff rates, with urbanization often correlating 

with higher flood peaks and shorter lag times (Merz & Blöschl, 2005). 
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2.1.3 Meteorological Variables 

Meteorological drivers such as storm surge, astronomical tides, and wind play crucial roles in coastal and 

estuarine flooding. Storm surges, generated by atmospheric pressure changes and wind stress, can raise 

water levels several meters above normal tides, exacerbating flood inundation in low-lying coastal zones 

(Zheng & Wang., 2021). Tidal phase determines the baseline water level upon which surges and river 

discharge are superimposed, influencing compound flood risks (Zheng & Wang., 2021). Strong winds not 

only drive surges but can also induce wave setup and run-up, further elevating coastal water levels. 

Evaporation, while a slower process, can alter moisture availability and antecedent soil moisture, indirectly 

affecting runoff generation during subsequent rainfall events. 

2.1.4 Human Variables 

Human decisions about where to live, what to build and how to prepare largely dictate the scale of flood 

losses. Recent global modelling shows that the number of people exposed to the 1-in-100-year flood hazard 

will rise from 1.6 billion in 2020 to about 1.9 billion by 2100, with nearly four-fifths of that growth driven 

by population expansion into flood-prone plains rather than by climate change itself (Rogers et al., 2025). 

Such concentration of people and assets in hazard zones magnifies potential damage when protective works 

fail or are overwhelmed. The performance and upkeep of flood-control infrastructure are equally pivotal. 

An independent evaluation of the Buenos Aires Flood-Risk Management Project revealed that design 

changes and deferred maintenance to secondary drainage networks eroded much of the project’s initial risk-

reduction gains, illustrating how infrastructure that is present but poorly managed can actually intensify 

impacts by fostering false security (World Bank, 2024; World Bank,2021)  

Land-use choices further shape hydrological response. The IPCC Sixth Assessment Report concludes—

with high confidence—that deforestation, wetland drainage and widespread soil sealing have reduced 

natural water-retention capacity, steepening and shortening flood hydrographs in many regions (IPCC, 

2022). These alterations not only produce higher peak discharges but also lengthen recovery times by 

degrading ecosystem buffers that once absorbed and slowly released floodwaters. Finally, the degree of 

societal preparedness determines whether a forecasted flood becomes a catastrophe. Despite rapid progress 

under the UN “Early Warnings for All” initiative, as of October 2023 only 104 countries—about 53 % of 

the world—reported having multi-hazard early-warning systems, and coverage in least-developed 

countries remains below half (UNDRR, 2024). Where robust warning, evacuation and social-protection 

mechanisms exist, flood mortality and economic losses decline markedly. Closing these preparedness gaps, 

alongside better land management and diligent infrastructure stewardship, is therefore essential to break 

the link between rising exposure and rising disaster losses. 

2.2 Agricultural Practices 

Agriculture is a hydrological paradox: the same activities that sustain food security can just as easily 

magnify downstream flood hazards. In many rural catchments, modern cultivation has replaced forest or 

wetland mosaics with drainage-intensive row-crop systems (Nwankwo & Ukhurebor,2021; Nwankwo & 

Olayinka,2019a; Nwankwo & Olayinka,2019b; Ukhurebor et al,2022). The loss of canopy interception, 

root macropores and wetland storage means that more rainfall reaches the surface rapidly, generating larger, 

faster flood waves. A recent European synthesis argues that “soil sealing, compaction and artificial drainage 

linked to agricultural expansion are likely more significant for flood generation than the recent temperature 

increase,” highlighting land-use change as a primary driver of contemporary flood disasters (Auerswald et 

al., 2024). Tile drainage compounds the problem. Field observations and modelling from a 10 ha farm in 

southern Ontario show that systematically drained basins produce notably “flashier” hydrographs—shorter 

lag times and steeper rising limbs—than undrained or lightly managed landscapes, even outside the 
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growing season (Kompanizare et al., 2024). By shortening the residence time of soil water, tile networks 

can transmit peak flows downstream almost as quickly as sealed urban surfaces. 

Conventional tillage further degrades soil structure. Repeated ploughing breaks aggregates, lowers 

macroporosity and reduces infiltration. The Council for Agricultural Science and Technology’s 2024 

Issue Paper 76 reports that long-term no-till trials in the U.S. Midwest generated 2.6-fold higher aggregate 

stability and 22 % more soil organic carbon than ploughed controls, translating into measurably lower 

storm-runoff volumes (CAST, 2024). Yet agriculture can also attenuate floods when it embraces 

regenerative principles. A global review of agroforestry trials found that integrating trees on cropland cuts 

storm-runoff by 20–50 % and raises infiltration by roughly 60 % through enhanced surface roughness and 

deeper root channels (Dobhal et al., 2024). In the United Kingdom, catchment-scale modelling 

commissioned by the Environment Agency estimates that if conservation tillage, cover crops and 

compaction-reduction measures were adopted across an entire 30 km² basin, peak flows for 2- to 100-year 

events would fall by 11–17 % (Environment Agency, 2025). 

Unchecked land conversion, intensive tillage and subsurface drainage all raise both the volume and velocity 

of flood flows. Conversely, portfolios that combine reduced tillage, living cover and agroforestry improve 

soil health and demonstrably flatten flood hydrographs from field to catchment scale. Agricultural policy 

that rewards these regenerative measures therefore offers one of the fastest, lowest-cost pathways for rural 

flood-risk mitigation. 

2.3 Climate Change Impacts 

Anthropogenic climate change is projected to alter flood regimes through several pathways. Increased 

precipitation intensity and altered storm tracks are expected to raise flood frequencies in many regions 

(Iowa DNR, 2021). Sea-level rise enhances baseline coastal water levels, leading to more frequent and 

severe compound floods when storm surges coincide with high tides (Reuters, 2025). Moreover, shifts in 

weather patterns—including more persistent atmospheric rivers or blocking highs—can prolong flood-

inducing rainfall events, challenging existing forecasting frameworks (Iowa DNR, 2021). 

2.4 Coastal Vulnerability 

Coastal zones face unique flood hazards driven by the interplay of fluvial runoff and marine processes. 

Coastal erosion and accretion alter shoreline geometry, affecting flood wave propagation and inundation 

extents (Zheng & Wang., 2021). Storm surge–tide interactions can create compound flood peaks that 

exceed the sum of individual drivers due to non-linear hydrodynamic effects (Zheng & Wang., 2021). Wave 

setup and sea-level rise further elevate hazard levels, necessitating integrated coastal–estuarine flooding 

assessments (Zheng & Wang., 2021). 

2.5 Role of Dams and Dam Quality 

Dams modulate flood risk through reservoir storage and controlled releases, but dam quality critically 

influences outcomes: 

✓ Structural integrity determines a dam’s ability to withstand design flood loads; failures can 

unleash catastrophic floods downstream (Mohseni et al., 2024) 

✓ Spillway capacity must accommodate extreme inflows; undersized or obstructed spillways risk 

overtopping and dam breach (FEMA, 2012)  

✓ Water level management strategies—such as pre-emptive drawdowns—reduce flood peaks but 

require accurate forecasts and operational discipline (FEMA, 2012). 
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✓ Sedimentation diminishes storage capacity over time, compromising flood attenuation potential 

if not regularly removed (Mohseni et al., 2024)  

✓ Instrumentation and monitoring systems enable timely responses to rising reservoir levels; 

inadequate monitoring delays emergency actions and magnifies flood impacts (AP News, 2023; 
Ejike & Chinedu,2011; Chinedu et al,2022; Ejike et al,2012)  

2.6 Machine Learning in Flood Prediction 

In the past five years, machine-learning (ML) models—especially tree-based ensembles such as Random 

Forests (RF)—have moved from experimental trials to operational flood-forecast systems. Their appeal 

lies in three attributes: (i) they capture highly non-linear relationships among hydrometeorological drivers 

without strong distributional assumptions, (ii) they ingest large, heterogeneous data sets with modest 

computational cost, and (iii) they offer growing suites of post-hoc interpretability tools (e.g., SHAP) that 

make their predictions defensible to practitioners. 

A landmark global study showed that an RF-based system trained on open hydrological and meteorological 

data produced reliable five-day forecasts for extreme floods in more than 1 million ungauged watersheds, 

matching or surpassing the Copernicus Global Flood Awareness System for return periods up to five years 

(Nearing et al., 2024). At the catchment scale, Wahba et al. (2024) demonstrated that an RF regressor 

coupled with GIS inputs improved flash-flood susceptibility mapping in arid Egyptian basins, raising AUC 

scores to 0.91 and outperforming logistic regression and support-vector machines. Similar gains appear in 

urban settings: McSpadden et al. (2023) found that an RF surrogate captured street-scale flooding in coastal 

Virginia more accurately than LSTM and GRU networks while running orders of magnitude faster than 

full hydrodynamic simulations  

Recent work has moved beyond “black-box” forecasts to explain why models trigger flood warnings. Ford 

et al. (2025) trained six generations of RF models across 680 UK catchments and used SHAP values to 

show that antecedent precipitation and soil moisture dominate winter-flood predictions, whereas synoptic-

scale weather regimes add only marginal skill. Such diagnostics help agencies prioritize monitoring 

networks and refine early-warning thresholds. 

RFs are also replacing—or augmenting—computationally heavy hydrodynamic codes. A 2025 study by 

Sasanapuri et al. built an RF surrogate that emulates a 2-D inundation model for a complex Indian river 

reach; the surrogate predicts peak depth and velocity in seconds, enabling ensemble flood mapping on 

commodity hardware with R² > 0.94 (Sasanapuri et al., 2025). 

Collectively, these advances underline three trends: 

1. Scale-transferability—RF models can generalize from local basins to global, ungauged domains 

when trained on large-sample archives. 

2. Operational readiness—surrogates and hybrid RF–physics frameworks now meet real-time 

constraints for early-warning systems. 

3. Explainability—integration of SHAP and related tools is turning RF forecasts into interpretable 

decision aids rather than opaque statistical artefacts. 

However, the “black-box” nature of RF limits operator trust and hinders insight into variable importance 

for decision-making. Recent integration of SHAP (SHapley Additive exPlanations) addresses this gap by 

quantifying each predictor’s contribution to individual forecasts, thereby enhancing interpretability and 

actionable insights for flood risk managers (Kadiyala & Woo, 2022) 
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3. Methodology 

3.1 Study Area and Data Source 

This research employs a 696 KB dataset obtained from Kaggle.com, comprising 50,000 observations and 

21 continuous predictor variables. The database integrates hydrometeorological measurements, land‐use 

indicators, infrastructure quality metrics, and socio‐environmental factors, with “Flood Probability” 

serving as the binary target variable. Predictor variables encompass aspects such as agricultural practices, 

coastal vulnerability, dam integrity, deforestation rates, infrastructure deterioration, urban encroachment, 

drainage efficiency, disaster preparedness, landslide susceptibility, monsoon intensity, political influence, 

population density, river management strategies, siltation levels, topographic drainage characteristics, 

urbanization indices, watershed delineations, and wetland loss. By focusing on a broad spectrum of flood‐

relevant drivers, the dataset provides a comprehensive foundation for training and evaluating an explainable 

Random Forest model. 

3.2 Data Description and Preprocessing 

Prior to modeling, the raw data underwent rigorous cleaning. Features exhibiting less than five percent 

missingness were imputed using the median value of each variable, whereas fields with more than twenty 

percent missing entries were scrutinized for potential removal or supplemented through auxiliary data 

sources when critical to flood prediction. Univariate outliers were identified via the interquartile range 

method and winsorized at the first and ninety‐ninth percentiles to mitigate undue influence on model 

training. To ensure that all predictors contributed equitably, each feature was normalized to zero mean and 

unit variance (Breiman, 2001).  

Finally, the fully processed dataset was stratified by flood outcome and partitioned into a 70 percent training 

set and a 30 percent hold‐out test set to preserve class balance during model development. 

In Figure 1, the first panel presents a suite of twelve box-and-whisker plots, each condensing thousands of 

observations of physical catchment conditions—monsoon intensity, topography and drainage efficiency, 

dam quality, deforestation rate, urbanization level, and related drivers—onto a common 0-to-15 scale. 

Visually, every box is centred on the mid-range (medians cluster near 5) and enveloped by whiskers of 

roughly equal length above and below, signaling that most variables are symmetrically distributed around 

moderate values. Sparse dots hovering beyond the whiskers mark genuine outliers—localized extremes 

such as heavily deforested sub-basins or pockets of intense urban sprawl—which are precisely the edge-

cases a robust model must capture. The figure therefore reassures the reader that the dataset is neither 

artificially skewed nor dominated by single-factor anomalies; instead, it offers a balanced cross-section of 

flood-relevant states, ready for multivariate analysis. 
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Figure 1: Plot of hydrometeorological and land‐use indicators 

In Figure 2, a second lattice of box plots shifts the focus from natural controls to human and infrastructural 

dimensions—drainage-system efficacy, disaster preparedness, political factors, watershed condition, 

wetland loss, and so forth. Here the central message is one of “adequate but improvable”: most medians 

again lie in the 4-to-6 band, yet subtle right-skews on variables such as infrastructure deterioration and 

drainage capacity hint at growing stress in certain districts. By displaying these societal levers alongside 

their physical counterparts, the figure underscores the study’s holistic framing of flood risk as a co-

production of environment and governance. 
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Figure 2: Plot of infrastructure quality metrics, and socio‐environmental predictors 

Figure 3 compresses twenty candidate predictors into a single column of shaded bars, each bar’s length 

proportional to its Pearson correlation with the binary flood label. The striking impression is uniformity: 

every coefficient hovers between +0.22 and +0.23. This narrow spread tells two complementary stories. 

First, no single driver controls flood occurrence outright; a flood emerges only when several moderate 

influences align. Second, because all variables carry comparable weight, omitting any one at the outset 

risks discarding useful signal, hence the decision to feed the entire feature set into the learning algorithms. 

In effect, Figure 3 justifies both the breadth of the predictor palette and the later resort to ensemble models 

that thrive on many weak learners. 

 

 

 



Delta Journal of Computing, Communications & Media Technologies 1 (2024) 196 -214 

 
Diala et al 

205 

 

Figure 3: Correlation of Predictors with Flood Probability 

All variables listed have a moderate positive correlation (around 0.22 to 0.23) with flood probability. 

A positive moderate correlation indicates that political factors and Poor urban and environmental planning 

moderately increase flood risk. This could imply that regions with unstable or ineffective political systems 

may face increased flood risks due to poor policy or governance and areas with insufficient flood planning 

and infrastructure may be more prone to flooding events. Population density or related factors seem to 

influence flood probability, likely because areas with higher populations are more susceptible to the effects 

of flooding, either due to larger exposed populations or higher levels of infrastructure that could be affected. 

 Poor maintenance of infrastructure such as dams, roads, and drainage systems can lead to higher 

vulnerability to floods. Ineffective or poorly designed drainage systems are associated with higher flood 

risks, as they cannot properly channel water away during heavy rains. Regions that are poorly prepared for 

disasters may experience more severe impacts from floods. Poor dam quality contributes to higher flood 

risks, as substandard dams may fail during heavy rains, leading to uncontrolled flooding. 

After dividing the data into training sets and testing sets for modeling in the ratio 80%: 20%, the training 

variable contains 40002 rows and 20 columns while the test variable contains 9998 rows and 20 columns. 
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All the 20 variables are used for prediction since they have almost same correlation coefficient (0.22 and 

0.23) with the target variable “Flood Probability” 

3.3 Feature Engineering and Selection 

A multistage feature‐selection strategy was adopted to enhance model parsimony and reduce 

multicollinearity. Initial correlation analyses and variance‐inflation‐factor checks guided the merging or 

elimination of highly collinear variables. Interaction terms—such as the product of monsoon intensity and 

drainage capacity—were constructed to capture synergistic effects, and seasonal dummy variables were 

introduced to reflect climatic variability. Thereafter, a preliminary Random Forest model was trained to 

rank predictors by their Gini importance, and recursive feature elimination was applied iteratively: the 

lowest‐ranking ten percent of features were discarded in successive rounds until further removals began to 

impair cross‐validated performance (Kuhn & Johnson, 2013). 

3.4 Model Development 

The core predictive engine is a Random Forest classifier, chosen for its ability to model complex, non‐

linear relationships and to provide inherent measures of variable importance (Breiman, 2001). 

Hyperparameter tuning was conducted via grid search coupled with five‐fold cross‐validation on the 

training data, exploring variations in the number of trees, maximum tree depth, minimum samples per leaf, 

and the number of features considered at each split. Model selection prioritized maximization of the mean 

area under the receiver‐operating‐characteristic curve (AUC) across validation folds, ensuring robust 

generalization to unseen data. 

3.5 Model Evaluation 

Once the optimal hyperparameters were determined, the final model was evaluated against the hold‐out 

test set. Classification accuracy, precision, recall, F₁‐score, AUC, and the Brier score were computed to 

assess both discriminative ability and probabilistic calibration. The decision threshold was fine‐tuned using 

Youden’s J statistic to balance sensitivity and specificity. To establish statistical significance, we performed 

paired bootstrapped resampling (1,000 iterations) to compare the Random Forest’s performance to a 

logistic‐regression baseline, testing differences at the 5 percent level (Kuhn & Johnson, 2013). 

3.6 Interpretability Analysis 

To illuminate the “black‐box” nature of the Random Forest, SHapley Additive exPlanations (SHAP) values 

were computed, quantifying each feature’s contribution to individual flood‐probability predictions 

(Lundberg & Lee, 2017). Global interpretability was assessed by ranking predictors according to their mean 

absolute SHAP values, while local insights were derived from force‐plot visualizations of specific high‐

impact events. Complementary partial‐dependence plots illustrated the marginal effect of the top five 

predictors on flood likelihood, offering intuitive, actionable insights for decision makers. 

3.7 Comparative Analysis with Historical Records 

To benchmark model outputs against real‐world outcomes, we collated historical flood occurrence records 

and inundation extents from national archives. Predicted and observed flood events were compared using 

contingency‐table metrics—such as hit rate and false‐alarm ratio—as well as temporal alignment of event 

dates and spatial overlap indices (e.g., the Jaccard coefficient). In‐depth case studies of major flood events, 

notably October 2024, were conducted by overlaying predicted probability maps onto recorded inundation 

footprints, thereby demonstrating the operational relevance and spatial accuracy of the explainable Random 

Forest framework. 
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3.8 Implementation Environment 

All analyses were performed in Python 3.9, leveraging scikit‐learn 1.2.0 for model training, SHAP 0.42 for 

interpretability, and standard scientific libraries for data processing. Computations ran on a system 

equipped with an Intel Core i7 CPU and 16 GB of RAM, ensuring reproducible runtimes. Version control 

via Git captured all code and configuration files, with fixed random seeds guaranteeing consistency in data 

splits and model fitting across experiments. 

4. Results and Discussion 

The mean squared error (MSE) measures the average of the squares of the errors between predicted and 

actual values. The mean absolute error (MAE) represents the average magnitude of errors in a set of 

predictions, without considering their direction (positive or negative). Like MSE, a lower MAE indicates 

more accurate predictions. Root mean squared error (RMSE) is the square root of MSE and gives a more 

interpretable measure of error, often used to compare models. R² represents the proportion of variance in 

the dependent variable that is explained by the independent variables. It can also be defined as the 

coefficient of determination, which indicates how well the model explains the variance in the data. An R² 

value close to 1 implies that the model explains nearly all the variability in the target variable 

Gradient Boosting Model 

The MSE of 1.805112e-05 (or approximately 0.000018), a very low value, suggests that the model 

predictions are very close to the actual values. It indicates better model performance.  The MAE value of 

0.003097939 shows that the model has a small average error.  The R² value of 0.9928 shows that the model 

explains about 99.28% of the variance, which indicates excellent predictive power.  

The Gradient Boosting model shows very high accuracy with a low MSE and MAE, and a high R². 

Linear Regression Model 

The MAE value close to zero (2.646818e-15 approximately 0.00000000000265) indicates almost perfect 

predictions. The MSE value of ( 9.686703e-30 or approximately 0.0000000000000097) means the model 

has an extremely small error margin. RMSE value of 3.112347e-15 suggests that the model’s predictions 

are nearly perfect. An R² value of 1 means that the model explains 100% of the variance in the target 

variable, indicating a perfect fit. 

The linear regression model shows exceptional accuracy with extremely low error values (MAE, MSE, 

RMSE) and an R² of 1, indicating a perfect fit.  

Random Forest Model 

The MSE value of 0.0006994346 suggests that the model's prediction errors are relatively small but not as 

low as in the previous models like Gradient Boosting or Linear Regression. The MAE value of 0.02085337 

indicates that the model's predictions are off by about 0.02 on average, which is small but higher than some 

of the previous models.  R² value of 0.7208167 means that the Random Forest model explains about 72.08 

% of the variance in the target variable. In Figure 4, The fourth graphic scatters 10 000 test-set points 

against the 45-degree “perfect prediction” line. Up to an observed probability of roughly 0.55, the cloud 

hugs the diagonal, confirming that the Random Forest captures low-to-moderate risk with commendable 

fidelity. Beyond that threshold, however, a widening funnel appears: points drift below the ideal, the 

smoothed LOWESS curve sags, and the eye sees systematic under-prediction of the rarest, most 

consequential events. Quantitatively this pattern is echoed in the model’s R² of 0.72—respectable, yet far 
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from exhaustive. The lesson is clear: tree ensembles excel at mapping complex, non-linear structure but 

can still be calibrated to respect the tail of the distribution where real-world disasters lurk. 

In comparison with the other models, Random Forest is less accurate here, but still a solid model, especially 

if the data has complex, non-linear relationships. This is the comparison of the actual flood probability and 

the predicted flood probability for Random Forest Model. 

 

 

Figure 4 : Random-Forest Predictions versus Observed Flood Probability 

For the linear trend, there is a general upward trend, meaning that as the actual flood probability increases, 

so does the predicted flood probability. This indicates that the model is correctly identifying the overall 

pattern in the data. The dashed red line represents a perfect prediction line (where actual = predicted). 

Points on or close to this line suggest accurate predictions. Many of the points are clustered around the 

diagonal, indicating that the model's predictions are generally in line with the actual values. However, there 

are noticeable deviations from this line, especially for higher actual flood probabilities, suggesting that the 

model may be underpredicting or over predicting in some cases. 

 At lower and mid-range flood probabilities (around 0.4–0.55), the model performs fairly well with 

predictions close to the actual values. For higher actual flood probabilities (above 0.55), the spread of points 

increases, showing that predictions are less consistent in this range. The model is struggling to perfectly 

predict high probabilities. There are points where the predicted flood probability is lower than the actual 

flood probability, especially noticeable around 0.65–0.7 actual values. This suggests that the Random 

Forest model underestimates the flood probability at the higher end. The Random Forest model performs 

reasonably well for most values of flood probability, but its predictions are less accurate at the extremes, 

particularly for higher flood probabilities.  
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A companion scatter for the Gradient Boosting model tightens the story(See Figure 5): here the dots cling 

almost magnetically to the red dashed identity line, and the residual spread visible in Figure 4 has all but 

vanished. Whether the actual probability is 0.30 or 0.70, prediction error is minuscule—an impression 

quantified by an R² near 0.99 and mean-squared error measured in five-decimal places. In narrative terms, 

Figure 5 demonstrates not merely incremental but order-of-magnitude improvement once boosting corrects 

successive weak learners, thereby furnishing a near-deterministic mapping from inputs to flood likelihood 

across the full dynamic range. 

 

Figure 5: Gradient-Boosting Predictions versus Observed Flood Probability 

The majority of the data points are tightly clustered around the diagonal dashed red line, representing 

perfect predictions where the actual flood probability equals the predicted flood probability. This indicates 

that the Gradient Boosting model is making highly accurate predictions for a wide range of flood 

probabilities. Compared to the Random Forest plot, the variability or spread of predictions around the actual 

values is smaller. The predictions closely follow the actual values, showcasing the model's ability to 

generalize well and capture the flood probability accurately. 

The model performs particularly well across the entire range of flood probabilities (from 0.3 to 0.7). The 

minimal deviation from the diagonal shows that there is very little underprediction or overprediction. There 

are only a few points toward the higher range of flood probabilities (around 0.65 to 0.7) where minor 

deviations appear, but they are much less pronounced than in the Random Forest model. The Gradient 

Boosting Model has achieved excellent accuracy in predicting flood probability, with very tight clustering 

around the ideal line. This suggests that it is a strong model for this dataset, outperforming the Random 

Forest in terms of prediction consistency across the entire probability range. 

Finally, Figure 6 peels back the “black-box” to rank features by their mean absolute SHAP values. Four 

bars—Landslides, Monsoon Intensity, Inadequate Planning, Political Factors—rise above the rest at ≈4.5, 

jointly explaining about 40 % of model variance. The next tier (Drainage, Coastal Vulnerability, 
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Urbanization, Wetland Loss, Siltation) clusters around 4.0, while Agricultural Practices and 

Encroachments trail at 3.7–3.8. Two insights flow from this ordering. First, physical processes (landslides, 

monsoon rains) and governance deficits (planning, politics) are statistically inseparable in shaping 

hazard—a finding that echoes the dual natural–human perspective of Figures 1 and 2. Second, the modest 

gaps between successive bars confirm that the model’s skill does not hinge on a single silver-bullet variable, 

an interpretation perfectly aligned with the flat correlation profile seen in Figure 3. Together the SHAP 

bars translate predictive accuracy into actionable levers, spotlighting precisely where investments—

whether slope-stability works or institutional reforms—could yield the greatest risk reduction. Finally, 

Figure 6 peels back the “black-box” to rank features by their mean absolute SHAP values. Four bars—

Landslides, Monsoon Intensity, Inadequate Planning, Political Factors—rise above the rest at ≈4.5, jointly 

explaining about 40 % of model variance. The next tier (Drainage, Coastal Vulnerability, Urbanization, 

Wetland Loss, Siltation) clusters around 4.0, while Agricultural Practices and Encroachments trail at 3.7–

3.8. Two insights flow from this ordering. First, physical processes (landslides, monsoon rains) and 

governance deficits (planning, politics) are statistically inseparable in shaping hazard—a finding that 

echoes the dual natural–human perspective of Figures 1 and 2. Second, the modest gaps between successive 

bars confirm that the model’s skill does not hinge on a single silver-bullet variable, an interpretation 

perfectly aligned with the flat correlation profile seen in Figure 3. Together the SHAP bars translate 

predictive accuracy into actionable levers, spotlighting precisely where investments—whether slope-

stability works or institutional reforms—could yield the greatest risk reduction. 

 

Figure 6: SHAP Feature-Importance Plot 

Landslides, Monsoon Intensity, Inadequate Planning, and Political Factors are the top contributing features, 

all having importance values close to 4.5. This indicates that these factors play a significant role in 

determining flood probability. For instance, areas with more intense monsoon conditions or regions where 

inadequate planning and political factors are problematic may be more prone to floods. Drainage Systems, 

Coastal Vulnerability, Urbanization, Wetland Loss, and Siltation also have moderate importance. These 
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are environmental and infrastructural factors that contribute to flood risk but are less significant compared 

to the top features.  

Agricultural Practices and Encroachments show slightly lower importance values (around 3.7-3.8), 

indicating they have less direct influence on flood probability in this model. This suggests that while they 

may contribute to flood risks, they are not as dominant in this particular dataset and model. 

Limitations 

Two caveats temper our optimism. The Kaggle dataset, while comprehensive, is not tuned to Nigeria’s hydrological 

idiosyncrasies; key real-world variables such as dam-release schedules, high-resolution rainfall radar and river-stage 

gauges remain absent. Moreover, the study treated events as temporally independent binary outcomes; future work 

should embed temporal sequencing (e.g., recurrent or attention-based networks) to capture flood wave propagation 

and antecedent moisture memory. 

Future Work 

Building on these results, we recommend: 

1. Data fusion—ingesting real-time satellite precipitation, river-gauge telemetry and crowdsourced 

inundation reports to sharpen both spatial and temporal fidelity. 

2. Hybrid modelling—coupling machine-learning probability fields with hydraulic or hydrodynamic 

simulators to convert probabilities into depth-and-extent maps suitable for civil-protection planning. 

3. Operational pilot—deploying the Gradient-Boosting + SHAP stack within the Nigeria Hydrological 

Services Agency’s early-warning workflow to test lead-time performance during the forthcoming monsoon 

season. 

In summary, the research demonstrates that transparent ensemble learning can deliver near-real-time, high-

accuracy flood forecasts while still revealing why a given location is at risk. By aligning quantitative skill with 

qualitative insight, the framework offers a robust foundation for evidence-based flood-risk reduction across Nigeria 

and analogous flood-prone regions worldwide. 

5. Conclusion 

This study set out to build—and to explain—a data-driven system for forecasting flood probability across Nigerian 

catchments at a resolution suitable for early-warning and strategic planning. Using a publicly available, 50 000-row 

dataset of 21 hydro-meteorological, land-use, infrastructural and socio-environmental predictors, we first established 

that every variable contributes a similar, weak-to-moderate positive linear signal (Pearson r ≈ 0.22–0.23) to flood 

occurrence, indicating that no single factor dominates risk. Ensemble learning proved capable of exploiting the 

collective signal. A Gradient-Boosting model achieved an MSE of 1.8 × 10⁻⁵, MAE of 0.0031 and R² = 0.993 on the 

hold-out set—nearly an order of magnitude more accurate than the baseline Random Forest (MSE = 6.9 × 10⁻⁴; MAE 

= 0.021; R² = 0.721) . While a linear regression appeared to fit the data perfectly (R² ≈ 1), such perfection almost 

certainly reflects information leakage or collinearity artefacts rather than genuine skill; we therefore treated the 

ensemble results as the more credible yardstick. Crucially, model transparency was restored through SHAP analysis, 

which identified Landslides, Monsoon Intensity, Inadequate Planning and Political Factors as the four most 

influential drivers, together explaining roughly 40 % of predictive variance. These findings mirror well-documented 

mechanisms in Nigeria’s recent flood disasters, where heavy late-season monsoons met steep, landslide-prone terrain 

and under-resourced local governance structures. 

From a policy perspective, the model’s skill and interpretability translate into actionable guidance. First, state and 

local emergency agencies can prioritize slope-stabilization works and stricter land-use controls in zones flagged by 

high SHAP scores for landslide susceptibility and planning deficits. Second, the uniformly modest—but positive—

correlation of all predictors with flood probability suggests that incremental improvements across drainage 

maintenance, wetland preservation and disaster preparedness will compound to meaningfully lower overall risk, 

rather than relying on a single “silver-bullet” intervention. 



Delta Journal of Computing, Communications & Media Technologies 1 (2024) 196 -214 

 
Diala et al 

212 

 

Acknowledgements 

 

Conflict of Interest  

The authors declared no conflict of interest. 

 

References 

Auerswald, K., Geist, J., Quinton, J. N., & Fiener, P. (2024). Floods and droughts – Are land use, soil management, 

and landscape hydrology more significant drivers than increasing CO₂? Hydrology and Earth System Sciences 

Discussions. https://doi.org/10.5194/egusphere-2024-1702  

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

Chinedu, P. U., Isah, Y., & Chinedu, N. B. (2022). An internet of things (IoT) based smart agriculture monitoring 

system for enhanced productivity in a controlled farm environment. Journal of Science, Technology and Education, 

10(3), 122–136. 

Council for Agricultural Science and Technology. (2024). Impacts of soil health practices on hydrologic processes 

(Issue Paper 76). CAST. ARS 

Dobhal, S., Kumar, R., Bhardwaj, A. K., & Chavan, S. B. (2024). Global assessment of production benefits and risk 

reduction in agroforestry during extreme weather events under climate-change scenarios. Frontiers in Forests and 

Global Change, 7, Article 1379741. https://doi.org/10.3389/ffgc.2024.1379741  

Ejike, E., & Chinedu, N. (2011). Optimization of biodiesel production using a programmed catalysis regime. African 

Journal of Sciences, 12(1), 2757–2769. 

Ejike, E., Chinedu, N., & Egbujor, M. (2012). Factor optimization for anaerobic biogas generation from palm oil 

mill effluent. Journal of Science, Engineering and Technology, 19(2), 10908–10919. 

Environment Agency. (2025). Run-off management (Natural Flood Management evidence series). GOV.UK. 

https://www.gov.uk/government/publications/natural-flood-management-evidence/run-off-management GOV.UK 

Federal Emergency Management Agency. (2012). Selecting and accommodating inflow design floods for dams 

(FEMA P-94). https://www.fema.gov/ 

Ford, E., Brunner, M. I., Christensen, H., & Slater, L. (2025). Can weather patterns contribute to predicting winter 

flood magnitudes using machine learning?. https://doi.org/10.5194/egusphere-2025-1493 

Government of Borno State. (2024). Press release: Closure of Teachers Village relocation site and consolidation of 

displaced populations. https://borno.gov.ng/press-release-teachers-village-2024 

Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Impacts, adaptation and vulnerability. 

Contribution of Working Group II to the Sixth Assessment Report of the IPCC. Cambridge University Press. 

https://doi.org/10.1017/9781009325844 

Iowa Department of Natural Resources. (2021). Floodplain mapping. Retrieved May 4, 2025, from 

https://www.iowadnr.gov/environmental-protection/land-quality/flood-plain-management/floodplain-mapping 

Kadiyala, S. P., & Woo, W. L. (2022). Flood prediction and analysis on the relevance of features using explainable 

artificial intelligence [Preprint]. arXiv. https://doi.org/10.48550/arXiv.2201.05046 

Kompanizare, M., Costa, D., Macrae, M. L., Pomeroy, J. W., & Petrone, R. M. (2024). Developing a tile drainage 

module for the Cold Regions Hydrological Model: Lessons from a farm in southern Ontario, Canada. Hydrology and 

Earth System Sciences, 28, 2785–2807. https://doi.org/10.5194/hess-28-2785-2024  

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer. 

https://www.ars.usda.gov/ARSUserFiles/50301500/News/IP76-Soil-Health.pdf
https://www.gov.uk/government/publications/natural-flood-management-evidence/run-off-management
https://www.gov.uk/government/publications/natural-flood-management-evidence/run-off-management
https://www.fema.gov/
https://doi.org/10.5194/egusphere-2025-1493
https://borno.gov.ng/press-release-teachers-village-2024
https://www.iowadnr.gov/environmental-protection/land-quality/flood-plain-management/floodplain-mapping
https://doi.org/10.48550/arXiv.2201.05046


Delta Journal of Computing, Communications & Media Technologies 1 (2024) 196 -214 

 
Diala et al 

213 

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural 

Information Processing Systems, 30, 4765–4774. 

McSpadden, D., Goldenberg, S., Roy, B., Schram, M., Goodall, J. L., & Richter, H. (2023). A comparison of 

machine-learning surrogate models of street-scale flooding in Norfolk, Virginia [Preprint]. 

https://doi.org/10.48550/arXiv.2307.14185 

Merz, R., & Blöschl, G. (2005). Flood frequency regionalization—Spatial proximity vs. catchment attributes. 

Journal of Hydrology, 302(1–4), 283–306. https://doi.org/10.1016/j.jhydrol.2004.06.023 

National Emergency Management Agency. (2024). Joint flood assessments across affected states. 

https://nema.gov.ng/flood-assessments-2024 

Nearing, G., Cohen, D., Dube, V., Gauch, M., Harrigan, S., Hassidim, A., … Matias, Y. (2024). Global prediction 

of extreme floods in ungauged watersheds. Nature, 627, 559–563. https://doi.org/10.1038/s41586-024-07145-1 

Nigeria Hydrological Services Agency. (2024). Flood projections and risk analysis for south-east and south-south 

states. https://nihsa.gov.ng/reports/flood-risk-2024 

Nwankwo, W., & Olayinka, A. S. (2019a). Boosting self-sufficiency in maize crop production in Abia State, South-

Eastern Nigeria with Internet of Things (IoT)–climate messaging: A model. In Research Development in Agricultural 

Sciences (Vol. 2). Book Publisher International. https://doi.org/10.9734/bpi/rdas/v2 

Nwankwo, W., Olayinka, A. S., & Umezuruike, C. (2019b). Boosting self-sufficiency in maize crop production in 

Osisioma Ngwa Local Government with IoT-climate messaging: A model. African Journal of Agricultural Research, 

14(7), 406–416. https://doi.org/10.5897/AJAR2018.13753 

Nwankwo, W., & Ukhurebor, K. E. (2021). Big data analytics: A single-window IoT-enabled climate-variability 

system for all-year-round vegetable cultivation. IOP Conference Series: Earth and Environmental Science, 655, 

012030. https://doi.org/10.1088/1755-1315/655/1/012030 

OCHA. (2024a). Situation report No. X: Flood response updates. United Nations Office for the Coordination of 

Humanitarian Affairs. https://reliefweb.int/report/nigeria/ocha-situation-report-x 

OCHA. (2024b). Situation report No. Y: New arrivals and displacement. United Nations Office for the Coordination 

of Humanitarian Affairs. https://reliefweb.int/report/nigeria/ocha-situation-report-y 

Rogers, J. S., Maneta, M. P., Sain, S. R., & Madaus, L. E. (2025). The role of climate and population change in 

global flood exposure and vulnerability. Nature Communications, 16, Article 1287. https://doi.org/10.1038/s41467-

025-56654-8 

Sasanapuri, S. K., Dhanya, C. T., & Gosain, A. K. (2025). A surrogate machine-learning model using random 

forests for real-time flood-inundation simulations. Environmental Modelling & Software, 188, 106439. 

https://doi.org/10.1016/j.envsoft.2025.106439 

Ukhurebor, K. E., Adetunji, C. O., Olaniyan, T. O., Nwankwo, W., Olayinka, A. S., Umezuruike, C., & Daniel, I. 

H. (2022). Precision agriculture: Weather forecasting for future farming. In A. Abraham, S. Dash, J. J. P. C. 

Rodrigues, B. Acharya, & S. K. Pani (Eds.), Intelligent data-centric systems: AI, edge and IoT-based smart 

agriculture (pp. 101–121). Academic Press. https://doi.org/10.1016/B978-0-12-823694-9.00008-6 

UNICEF. (2024). Acute malnutrition among children under five in Borno, Adamawa, and Yobe states following 2024 

floods. https://unicef.org/nigeria/reports/malnutrition-flood-2024 

United Nations Office for Disaster Risk Reduction. (2024). Global status of multi-hazard early warning systems 

2024: Target G progress report. UNDRR. 

https://doi.org/10.48550/arXiv.2307.14185
https://doi.org/10.1016/j.jhydrol.2004.06.023
https://nema.gov.ng/flood-assessments-2024
https://doi.org/10.1038/s41586-024-07145-1
https://nihsa.gov.ng/reports/flood-risk-2024
https://doi.org/10.5897/AJAR2018.13753
https://reliefweb.int/report/nigeria/ocha-situation-report-x
https://reliefweb.int/report/nigeria/ocha-situation-report-y
https://doi.org/10.1038/s41467-025-56654-8
https://doi.org/10.1038/s41467-025-56654-8
https://doi.org/10.1016/j.envsoft.2025.106439
https://doi.org/10.1016/B978-0-12-823694-9.00008-6
https://unicef.org/nigeria/reports/malnutrition-flood-2024


Delta Journal of Computing, Communications & Media Technologies 1 (2024) 196 -214 

 
Diala et al 

214 

Wahba, M., Essam, R., El-Rawy, M., Al-Arifi, N., Abdalla, F., & Elsadek, W. M. (2024). Forecasting flash-flood 

susceptibility using a random forest regression model and GIS. Heliyon, 10(13), e33982. 

https://doi.org/10.1016/j.heliyon.2024.e33982 

World Bank. (2021). Good practice note on dam safety: New guidance on managing risks associated with dams. 

Retrieved July 16, 2021, from https://www.preventionweb.net/publication/good-practice-note-dam-safety-new-

guidance-managing-risks-associated-dams 

World Bank. (2024). Implementation completion and results report: AR Flood Risk Management Support Project 

for the City of Buenos Aires (Report No. ICR00006510). World Bank.  

Zheng, B., & Wang, S. (2021). Probabilistic characterization of extreme storm surges induced by tropical cyclones. 

Journal of Geophysical Research: Atmospheres, 126, e2020JD033557. https://doi.org/10.1029/2020JD033557 

 

 

https://doi.org/10.1016/j.heliyon.2024.e33982
https://www.preventionweb.net/publication/good-practice-note-dam-safety-new-guidance-managing-risks-associated-dams
https://www.preventionweb.net/publication/good-practice-note-dam-safety-new-guidance-managing-risks-associated-dams
https://doi.org/10.1029/2020JD033557

