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 This study proposes a lightweight hybrid model that integrates U-Net with 

Vision Transformer (ViT) blocks to enable accurate and efficient segmentation 

across two medical imaging domains: cardiac MRI and breast cancer 

ultrasound. The model employs a compact U-Net backbone enhanced with 

lightweight ViT modules inspired by MobileViT and is designed for 

deployment on resource-constrained platforms such as Google Colab. It was 

trained and evaluated on two public datasets—the ACDC cardiac MRI dataset 

for segmenting the left ventricle (LV), right ventricle (RV), and myocardium, 

and the BUSI breast ultrasound dataset for classifying benign and malignant 

lesions. Performance was benchmarked against U-Net, Attention U-Net, and 

TransUNet using the Dice coefficient. Experimental results show that the 

proposed hybrid model achieves segmentation accuracy comparable to 

TransUNet (Dice ≈ 0.92 on ACDC and ≈ 0.85 on BUSI) while reducing 

parameter count by 40% and VRAM usage by approximately 35%. The model 

also demonstrates strong cross-domain generalization, with only a 3% Dice 

score reduction when fine-tuned across domains, compared to up to 7% 

degradation observed in baseline models. These findings indicate that the 

proposed lightweight U-Net–ViT hybrid offers an effective balance between 

accuracy, efficiency, and adaptability, making it highly suitable for low-

resource medical imaging applications. 
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1.  Introduction 

Medical image segmentation plays a pivotal role in computer-assisted diagnosis, prognosis, and treatment 

planning, particularly in domains such as cardiology and oncology (Chen el al., 2021). In cardiology, 

cardiac magnetic resonance imaging (MRI) is widely used for quantifying cardiac function by segmenting 

anatomical structures such as the left ventricle (LV), right ventricle (RV), and myocardium. Similarly, in 

oncology, accurate segmentation of breast lesions from ultrasound imaging is critical for early detection, 

differentiation between benign and malignant cases, and effective treatment planning (Dosovitskiy el al., 

2020). Thus, the reliability and efficiency of segmentation algorithms directly influence clinical decision-

making. 
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Convolutional neural networks (CNNs), especially U-Net (Ronneberger et al., 2016) and its numerous 

variants, have become foundational in medical image segmentation due to their encoder–decoder structure 

and strong ability to capture local spatial information. However, conventional CNN-based approaches 

primarily rely on localized receptive fields, which limit their capacity to capture long-range dependencies 

in medical images. This limitation often reduces performance when dealing with complex anatomical 

variations or noisy imaging conditions. 

To address this limitation, Transformer-based models have recently been introduced in medical imaging. 

For instance, TransUNet integrates Vision Transformers (ViTs) with U-Net to capture both local and global 

contextual information, achieving strong segmentation accuracy. Nevertheless, such models typically incur 

high computational overhead, requiring substantial GPU memory and long training times. These factors 

pose challenges for deployment in resource-constrained environments such as Google Colab or low-

resource medical facilities. 

Another critical challenge lies in domain generalization. Most segmentation models are trained and 

evaluated within a single imaging modality, limiting their robustness when applied to different medical 

domains (Ding et al., 2022). For example, a model optimized for cardiac MRI may fail to generalize 

effectively to breast ultrasound images due to differences in imaging physics, anatomical structures, and 

noise characteristics. This gap highlights the need for models that can maintain both accuracy and 

efficiency while demonstrating cross-domain adaptability. 

To address these challenges, this study introduces a lightweight hybrid model that combines the strengths 

of U-Net and Vision Transformer blocks. The proposed approach incorporates lightweight ViT modules 

inspired by MobileViT into a compact U-Net backbone, aiming to achieve global feature learning with 

minimal computational overhead. The model is evaluated on two distinct public datasets—the ACDC 

cardiac MRI dataset and the BUSI breast ultrasound dataset—to assess both single-domain performance 

and cross-domain adaptability (Valanarasu & Hacihaliloglu, 2021). By comparing results against widely 

used baselines, including U-Net, Attention U-Net, and TransUNet, this study highlights how the proposed 

hybrid achieves a favorable balance between segmentation accuracy, parameter efficiency, GPU memory 

usage, and training time. 

2. Review of Related Work 

Convolutional neural networks (CNNs) have gained significant popularity and have been widely applied 

in recent years (Kayalibay et al., 2017). Among these, U-Net (Ronneberger et al., 2016) has emerged as a 

leading architecture for multi-organ medical image segmentation. Due to its simplicity and strong 

performance, numerous variants of U-Net have been developed, including ResUNet (Xiao, Lian, Luo, & 

Li, 2018), UNet++ (Zhou, Rahman Siddiquee, Tajbakhsh, & Liang, 2018), UNet3+ (Huang, Lin, Tong, 

Hu, & Zhang, 2020), and DC-UNet (Lou, Guan, & Loew, 2021). These enhanced models introduce novel 

structural designs, connection strategies, and computational operations to improve Enferadi, et al., 2020 

segmentation accuracy and fine-detail representation. They also incorporate optimizations in network 

depth, feature fusion, and parameter efficiency. 

As a result, U-Net variants have been widely adopted in medical image analysis, leading to substantial 

advancements. For instance, Kawamoto and Kamiya (2024) applied U-Net for multi-region skeletal muscle 

segmentation, successfully identifying multiple muscle regions with high accuracy. Similarly, Ashino and 

Kamiya (2024) employed a multi-class learning framework to effectively segment both the 

sternocleidomastoid and skeletal muscle joints. 
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The Transformer was originally introduced for natural language processing tasks (Vaswani et al., 2017), 

where it achieved remarkable success across diverse applications. Its effectiveness stems from its ability to 

perform parallel computations, model long-range dependencies, and capture global contextual features 

(Devlin, et al, 2018). Building on this success, Dosovitskiy et al. (2020) proposed a transformer-based 

image classification model, leading to the development of the Vision Transformer (ViT). In computer 

vision, ViT represents images as sequences of divided patches, which are then processed as sequential data 

by the transformer model. 

However, ViT requires substantial computational resources and memory to handle high-resolution images, 

prompting the development of improved architectures. The Pyramid Vision Transformer (PVT) (Argall et 

al., 2019) was introduced to efficiently manage large-scale images through hierarchical structures. 

Similarly, the Convolutional Vision Transformer (CvT) (Wu et al., 2021) reduces computational cost while 

enhancing scalability. Lin and Guo (2021) further advanced this line of work by proposing the Swin 

Transformer, which incorporates a shifted window mechanism to process semantic information effectively 

while reducing information loss caused by uniform patch division. Li and Deng (2023) enhanced 

segmentation accuracy by integrating a context pyramid mechanism with the transformer framework. More 

recently, Yao et al. (2023) proposed the Dual Vision Transformer, which improves model efficiency while 

reducing overall complexity. 

To better capture both local and global contextual information, researchers have increasingly combined 

CNNs with transformers to enhance performance in multi-organ medical image segmentation. Chen et al. 

(2021) introduced TransUNet, which integrates CNN and ViT within the encoder to leverage the strengths 

of both architectures. Similarly, Wang et al. (2021) incorporated a mixed transformer module into the U-

Net framework to account for dataset relevance. Enferadi et al. (2020) employed a visual attention-based 

transformer as the encoder and a CNN as the decoder, enabling direct image input into the transformer. Lin 

and Guo (2021) proposed a dual-scale encoding strategy based on the Swin Transformer to extract both 

coarse- and fine-grained features across different semantic levels. Peng et al. (2018) further combined the 

transformer with recurrent neural networks (RNNs) to ensure more efficient training. 

In contrast to these approaches, the present study replaces the Multi-Head Self-Attention (MSA) 

mechanism in ViT with visual attention. While MSA primarily captures spatial correlations, it often 

overlooks channel-wise dependencies. Visual attention, with its large kernel design, adapts effectively to 

both spatial and channel dimensions. Furthermore, during up-sampling, the decoder tends to lose critical 

information and reduce resolution. To mitigate this, we propose incorporating a residual convolutional 

attention module after up-sampling, along with a three-layer multi-feature convolution (MFC) following 

encoder–decoder feature fusion. This design enhances segmentation clarity and accuracy by preserving 

vital information across dimensions.  

3. Materials and Methods 

This section describes the datasets used, preprocessing procedures, architectural design of the proposed 

model, baseline comparisons, training protocols, and evaluation metrics. The methodology was designed 

to ensure that the lightweight hybrid U-Net with Vision Transformer (ViT) blocks could be rigorously 

evaluated for segmentation performance, computational efficiency, and cross-domain adaptability across 

different imaging modalities. 

 

3.1 Dataset 
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To evaluate the proposed hybrid model across diverse medical domains, two publicly available benchmark 

datasets were selected: the Automated Cardiac Diagnosis Challenge (ACDC) dataset for cardiac MRI 

segmentation and the Breast Ultrasound Images (BUSI) dataset for breast lesion segmentation. These 

datasets were chosen because they represent two fundamentally different imaging modalities—MRI and 

ultrasound—which differ in imaging physics, anatomical targets, and noise characteristics. This diversity 

provides a suitable testbed for assessing both segmentation accuracy and cross-domain robustness. 

The ACDC dataset consists of cine cardiac magnetic resonance images collected from 100 patients. Each 

sample includes short-axis views of the heart covering end-diastolic and end-systolic phases, with manual 

expert annotations for three anatomical structures: the left ventricle (LV), right ventricle (RV), and 

myocardium (Myo). The dataset was divided into 70 patients for training, 10 for validation, and 20 for 

independent testing. This split follows the established protocol in previous studies to ensure consistency 

and comparability with prior work. 

The BUSI dataset contains approximately 780 breast ultrasound images annotated with binary 

segmentation masks distinguishing benign and malignant lesions. Ultrasound data are inherently noisier 

than MRI due to speckle patterns and operator dependence, making segmentation particularly challenging. 

The dataset was split into 70% training, 10% validation, and 20% testing. The inclusion of this dataset 

allowed the study to evaluate whether the proposed model could generalize effectively from a structured 

modality such as MRI to a less structured one like ultrasound. 

The choice of these datasets reflects an emphasis on diversity: cardiac MRI requires accurate delineation 

of well-defined anatomical boundaries, whereas breast ultrasound demands robustness to noisy and 

heterogeneous lesion appearances. Combining both datasets simulates real-world clinical scenarios in 

which a single segmentation framework may need to handle multiple imaging modalities. 

3.2 Preprocessing 

Medical imaging datasets vary widely in acquisition settings, image resolution, and contrast properties. 

Preprocessing was therefore performed to ensure consistency across samples and to prepare the data for 

neural network training. 

For the ACDC dataset, all MRI images were normalized to zero mean and unit variance to account for 

intensity variations across scans. Each image was center-cropped to a fixed resolution of 256 × 256 pixels, 

maintaining a balance between preserving anatomical detail and reducing computational cost. Additionally, 

resampling was applied to achieve uniform voxel spacing across patients, ensuring consistent spatial 

dimensions before segmentation training. 

For the BUSI dataset, preprocessing focused on standardizing input resolution and enhancing contrast. 

Images were resized to 256 × 256 pixels to match the ACDC preprocessing setup. Histogram equalization 

was applied to improve contrast, making lesions more distinguishable from surrounding tissue. Finally, 

normalization was applied to bring pixel intensities to a common scale across all images. 

To enhance model generalization, data augmentation was applied during training. Augmentations included 

random rotations of ±15°, horizontal and vertical flips, and brightness shifts. These transformations 

simulated real-world variability in imaging acquisition and reduced overfitting by exposing the model to a 

wider range of visual patterns. Augmentations were applied on the fly during training to maximize diversity 

in each batch. 

3.3 Model Architecture 

The core of this study is the proposed lightweight hybrid model, which integrates a U-Net backbone with 

Vision Transformer (ViT) blocks. The design philosophy was to retain the strong localization ability of 

convolutional networks while incorporating the global context modeling capacity of transformers—all 

within a computationally efficient framework suitable for deployment on resource-limited platforms such 

as Google Colab. 

The U-Net backbone follows a standard encoder–decoder structure with four downsampling and 

upsampling stages. The encoder progressively reduces spatial resolution while increasing feature 

dimensionality, enabling hierarchical feature extraction. The decoder reconstructs segmentation maps by 
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progressively upsampling and integrating features via skip connections from the encoder, preserving fine-

grained spatial details alongside high-level semantic information. 

To overcome CNNs’ limitation in modeling long-range dependencies, lightweight ViT blocks were 

introduced at the bottleneck of the U-Net. Each block consists of three key components: 

1. Patch embedding: Feature maps are divided into small patches, which are linearly projected into an 

embedding space. 

2. Transformer encoder: A reduced-depth transformer encoder with four self-attention heads and a 

compact feed-forward dimension enables global feature interactions at lower computational cost. 

3. Feature reconstruction: The transformed embeddings are projected back into spatial feature maps 

for seamless integration with the U-Net decoder. 

Inspired by MobileViT, these blocks were designed to minimize parameter count and memory usage while 

maintaining strong non-local feature learning capability. 

To further enhance efficiency, depthwise separable convolutions were employed in the double convolution 

blocks, significantly reducing trainable parameters without sacrificing representational power. As a result, 

the model contained approximately 5 million parameters, substantially fewer than transformer-heavy 

architectures such as TransUNet. 

3.4 Baselines 

For comparative analysis, three baseline models were implemented: 

• U-Net: The original encoder–decoder architecture served as the foundational baseline, 

demonstrating the effectiveness of the proposed modifications. 

• Attention U-Net: This model incorporates attention gates into the skip connections, allowing the 

network to emphasize relevant regions during decoding and providing an improved CNN baseline 

with better feature selection. 

• TransUNet: Representing a state-of-the-art transformer-based approach, TransUNet integrates a 

CNN encoder with a Vision Transformer encoder. Although highly effective in segmentation, it is 

computationally demanding and requires substantial GPU memory, making it a suitable benchmark 

for evaluating the efficiency of the proposed lightweight design. 

These baselines represent the spectrum of segmentation approaches: pure CNN-based (U-Net), CNN with 

attention mechanisms (Attention U-Net), and CNN–Transformer hybrids (TransUNet). 

3.5 Training Protocol 

Training was carefully designed to optimize model performance while ensuring fair comparisons across all 

architectures. Different loss functions were employed depending on the dataset. 

For the BUSI dataset (binary segmentation), the loss function combined Dice loss and binary cross-entropy 

(BCE). Dice loss ensured overlap accuracy, while BCE penalized pixel-wise misclassifications. 

For the ACDC dataset (multi-class segmentation), the loss function combined Dice loss with categorical 

cross-entropy, accommodating multiple anatomical classes. 

The Adam optimizer was used with a learning rate of 1 × 10−4, determined experimentally for stability 

and convergence. A batch size of 8 was selected as a balance between computational feasibility on Google 

Colab and gradient stability. Training proceeded for a maximum of 100 epochs with early stopping 

(patience = 10 epochs) to prevent overfitting. 

All training was conducted on Google Colab, utilizing an NVIDIA Tesla T4 GPU (16 GB VRAM). This 

setup was intentionally chosen to reflect constraints of resource-limited environments. GPU memory usage, 

training time, and parameter counts were recorded to assess computational efficiency. 

3.6 Evaluation Metrics 

. The proposed model and baselines were evaluated across three dimensions: segmentation quality, 

computational efficiency, and cross-domain generalization. 

1. Segmentation quality: Evaluated using the Dice coefficient (measuring overlap between predicted 

and ground truth masks) and the 95th percentile Hausdorff Distance (HD95) (measuring boundary 



Delta Journal of Computing, Communications & Media Technologies 2(1) (2025) 1 -12 

 
Inanemoh et al/  Delta Journal of Computing, Communications & Media Technologies 2(1) (2025) 1 -12                          
6 

accuracy). Together, these metrics provide robust assessment of volumetric and boundary 

performance. 

2. Efficiency: Measured using the total number of trainable parameters, peak GPU memory 

consumption, and average training time per epoch, quantifying the computational footprint of each 

architecture. 

3. Cross-domain generalization: Tested by training on one dataset (e.g., ACDC) and fine-tuning on 

the other (e.g., BUSI). The resulting performance was compared to models trained directly on the 

target dataset, providing insight into adaptability across imaging modalities and practical 

deployment readiness in heterogeneous clinical environments 

4. Results 

4.1 Segmentation Performance 

The performance of the proposed hybrid model was compared with U-Net, Attention U-Net, and 

TransUNet across both datasets (see Table 1). On the ACDC cardiac MRI dataset, the proposed hybrid 

achieved a Dice coefficient of 0.92 with a Hausdorff-95 distance (HD95) of 2.2 mm. This performance was 

comparable to TransUNet, which slightly outperformed it with a Dice of 0.93 and HD95 of 2.1 mm, while 

surpassing both U-Net (Dice 0.90, HD95 2.8 mm) and Attention U-Net (Dice 0.91, HD95 2.4 mm). 

On the BUSI breast ultrasound dataset, the proposed model achieved a Dice score of 0.85 and HD95 of 3.7 

mm, again showing results close to TransUNet (Dice 0.86, HD95 3.5 mm) and outperforming U-Net (Dice 

0.82, HD95 4.5 mm) and Attention U-Net (Dice 0.83, HD95 4.0 mm). 

 

Table 1:Segmentation Performance 

Model ACDC Dice ACDC HD95 (mm) BUSI Dice BUSI HD95 (mm) 

U-Net 0.90 2.8 0.82 4.5 

Attention U-Net 0.91 2.4 0.83 4.0 

TransUNet 0.93 2.1 0.86 3.5 

Proposed Hybrid 0.92 2.2 0.85 3.7 

These results indicate that the lightweight hybrid architecture maintains segmentation accuracy comparable 

to state-of-the-art transformer-based approaches while offering improved computational efficiency 

(discussed below). 

4.2 Efficiency Metrics 

Efficiency was evaluated based on parameter count, GPU memory consumption, and training time. The 

proposed hybrid model contained approximately 5 million parameters, the lowest among all tested 

architectures. In comparison, U-Net contained approximately 7 million, Attention U-Net 8 million, and 

TransUNet 12 million parameters. 

Regarding memory consumption on Google Colab’s NVIDIA Tesla T4 GPU, the proposed model required 

4.5 GB of peak imaging domains was evaluated by training on one dataset and fine-tuning on the other. 

When trained on the ACDC dataset and fine-tuned on BUSI for 20 epochs, U-Net exhibited a performance 

drop to a Dice score of 0.78 (−4%), while TransUNet dropped to 0.80 (−6%). The proposed hybrid 

demonstrated superior robustness, with only a modest drop to 0.82 (−3%). 

A similar trend was observed when training on BUSI and fine-tuning on ACDC, where VRAM, compared 

to 5.2 GB for U-Net, 5.6 GB for Attention U-Net, and 8.0 GB for TransUNet. Training time per epoch was 

also lowest for the proposed model (~55 seconds), compared to ~60 seconds for U-Net, ~70 seconds for 

Attention U-Net, and ~100 seconds for TransUNet. These findings confirm that the proposed design 

achieves substantial computational savings, making it suitable for resource-limited environments. 

4.3 Cross-Domain Generalization 

Model generalization across  
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the proposed model again demonstrated smaller degradation compared with the baselines. These results 

highlight that the proposed hybrid model not only matches the segmentation accuracy of heavier 

transformer-based architectures but also offers greater efficiency and stronger cross-domain generalization. 

4.4 Discussion of Findings 

The proposed lightweight hybrid model achieves segmentation accuracy nearly equivalent to TransUNet 

while delivering substantial reductions in parameter count, VRAM usage, and training time—making it 

feasible for deployment on Google Colab and other low-resource platforms. Notably, it maintains better 

cross-domain robustness, suggesting that the ViT blocks effectively capture modality-agnostic features that 

generalize across imaging types. 

Although TransUNet maintains a slight edge in absolute accuracy, its high computational cost limits 

practical utility. The findings validate the proposed trade-off between performance and efficiency, 

confirming that the model remains compact yet powerful enough for real-world clinical and research 

environments. 

4.5 Limitations and Future Work 

While the results are promising, several limitations should be acknowledged. A primary limitation is that 

the experimental validation was conducted only on two 2D datasets. This may not fully capture model 

performance in broader clinical contexts involving 3D volumetric data (e.g., CT or MRI scans) or other 

imaging modalities such as mammography. Expanding validation to include datasets like CBIS-DDSM 

(mammography) or BraTS (3D brain MRI) would strengthen claims of cross-domain robustness and 

generalizability. 

Additionally, hyperparameter tuning—particularly for transformer depth and attention heads—was limited 

by computational constraints. A more extensive optimization search could potentially improve performance 

further. There is also a risk of overfitting due to the model’s capacity, although this was mitigated through 

data augmentation and early stopping. 

Future work will address these limitations by incorporating more diverse datasets, exploring 3D 

architectural extensions, and employing neural architecture search (NAS) for further optimization. 

Incorporating explainability techniques such as Grad-CAM and attention visualization will also enhance 

interpretability and support clinical adoption. 

5. Conclusion 

This study presents a Lightweight U-Net with Vision Transformer Blocks, achieving competitive 

accuracy in both cardiac MRI and breast ultrasound segmentation tasks with significantly reduced 

computational cost. Its strong cross-domain performance and resource-efficient footprint make it a 

promising candidate for deployment in low-resource clinical settings. 

Future work will focus on expanding the dataset scope, exploring 3D model extensions, and integrating 

explainability modules to promote transparency and clinical usability. 
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