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This study proposes a lightweight hybrid model that integrates U-Net with
Vision Transformer (ViT) blocks to enable accurate and efficient segmentation
across two medical imaging domains: cardiac MRI and breast cancer
ultrasound. The model employs a compact U-Net backbone enhanced with
lightweight ViT modules inspired by MobileViT and is designed for
deployment on resource-constrained platforms such as Google Colab. It was
trained and evaluated on two public datasets—the ACDC cardiac MRI dataset
for segmenting the left ventricle (LV), right ventricle (RV), and myocardium,
and the BUSI breast ultrasound dataset for classifying benign and malignant
lesions. Performance was benchmarked against U-Net, Attention U-Net, and
TransUNet using the Dice coefficient. Experimental results show that the
proposed hybrid model achieves segmentation accuracy comparable to
TransUNet (Dice = 0.92 on ACDC and = 0.85 on BUSI) while reducing
parameter count by 40% and VRAM usage by approximately 35%. The model
also demonstrates strong cross-domain generalization, with only a 3% Dice
score reduction when fine-tuned across domains, compared to up to 7%
degradation observed in baseline models. These findings indicate that the
proposed lightweight U-Net-ViT hybrid offers an effective balance between
accuracy, efficiency, and adaptability, making it highly suitable for low-
resource medical imaging applications.
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1. Introduction

Medical image segmentation plays a pivotal role in computer-assisted diagnosis, prognosis, and treatment
planning, particularly in domains such as cardiology and oncology (Chen el al.,
cardiac magnetic resonance imaging (MRI) is widely used for quantifying cardiac function by segmenting
anatomical structures such as the left ventricle (LV), right ventricle (RV), and myocardium. Similarly, in
oncology, accurate segmentation of breast lesions from ultrasound imaging is critical for early detection,
differentiation between benign and malignant cases, and effective treatment planning (Dosovitskiy el al.,
2020). Thus, the reliability and efficiency of segmentation algorithms directly influence clinical decision-

making.

2021). In cardiology,
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Convolutional neural networks (CNNs), especially U-Net (Ronneberger et al., 2016) and its numerous
variants, have become foundational in medical image segmentation due to their encoder—decoder structure
and strong ability to capture local spatial information. However, conventional CNN-based approaches
primarily rely on localized receptive fields, which limit their capacity to capture long-range dependencies
in medical images. This limitation often reduces performance when dealing with complex anatomical
variations or noisy imaging conditions.

To address this limitation, Transformer-based models have recently been introduced in medical imaging.
For instance, TransUNet integrates Vision Transformers (ViTs) with U-Net to capture both local and global
contextual information, achieving strong segmentation accuracy. Nevertheless, such models typically incur
high computational overhead, requiring substantial GPU memory and long training times. These factors
pose challenges for deployment in resource-constrained environments such as Google Colab or low-
resource medical facilities.

Another critical challenge lies in domain generalization. Most segmentation models are trained and
evaluated within a single imaging modality, limiting their robustness when applied to different medical
domains (Ding et al., 2022). For example, a model optimized for cardiac MRI may fail to generalize
effectively to breast ultrasound images due to differences in imaging physics, anatomical structures, and
noise characteristics. This gap highlights the need for models that can maintain both accuracy and
efficiency while demonstrating cross-domain adaptability.

To address these challenges, this study introduces a lightweight hybrid model that combines the strengths
of U-Net and Vision Transformer blocks. The proposed approach incorporates lightweight ViT modules
inspired by MobileViT into a compact U-Net backbone, aiming to achieve global feature learning with
minimal computational overhead. The model is evaluated on two distinct public datasets—the ACDC
cardiac MRI dataset and the BUSI breast ultrasound dataset—to assess both single-domain performance
and cross-domain adaptability (Valanarasu & Hacihaliloglu, 2021). By comparing results against widely
used baselines, including U-Net, Attention U-Net, and TransUNet, this study highlights how the proposed
hybrid achieves a favorable balance between segmentation accuracy, parameter efficiency, GPU memory
usage, and training time.

2. Review of Related Work

Convolutional neural networks (CNNs) have gained significant popularity and have been widely applied
in recent years (Kayalibay et al., 2017). Among these, U-Net (Ronneberger et al., 2016) has emerged as a
leading architecture for multi-organ medical image segmentation. Due to its simplicity and strong
performance, numerous variants of U-Net have been developed, including ResUNet (Xiao, Lian, Luo, &
Li, 2018), UNet++ (Zhou, Rahman Siddiquee, Tajbakhsh, & Liang, 2018), UNet3+ (Huang, Lin, Tong,
Hu, & Zhang, 2020), and DC-UNet (Lou, Guan, & Loew, 2021). These enhanced models introduce novel
structural designs, connection strategies, and computational operations to improve Enferadi, et al., 2020
segmentation accuracy and fine-detail representation. They also incorporate optimizations in network
depth, feature fusion, and parameter efficiency.

As a result, U-Net variants have been widely adopted in medical image analysis, leading to substantial
advancements. For instance, Kawamoto and Kamiya (2024) applied U-Net for multi-region skeletal muscle
segmentation, successfully identifying multiple muscle regions with high accuracy. Similarly, Ashino and
Kamiya (2024) employed a multi-class learning framework to effectively segment both the
sternocleidomastoid and skeletal muscle joints.
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The Transformer was originally introduced for natural language processing tasks (Vaswani et al., 2017),
where it achieved remarkable success across diverse applications. Its effectiveness stems from its ability to
perform parallel computations, model long-range dependencies, and capture global contextual features
(Devlin, et al, 2018). Building on this success, Dosovitskiy et al. (2020) proposed a transformer-based
image classification model, leading to the development of the Vision Transformer (ViT). In computer
vision, VIiT represents images as sequences of divided patches, which are then processed as sequential data
by the transformer model.

However, VIiT requires substantial computational resources and memory to handle high-resolution images,
prompting the development of improved architectures. The Pyramid Vision Transformer (PVT) (Argall et
al., 2019) was introduced to efficiently manage large-scale images through hierarchical structures.
Similarly, the Convolutional Vision Transformer (CvT) (Wu et al., 2021) reduces computational cost while
enhancing scalability. Lin and Guo (2021) further advanced this line of work by proposing the Swin
Transformer, which incorporates a shifted window mechanism to process semantic information effectively
while reducing information loss caused by uniform patch division. Li and Deng (2023) enhanced
segmentation accuracy by integrating a context pyramid mechanism with the transformer framework. More
recently, Yao et al. (2023) proposed the Dual Vision Transformer, which improves model efficiency while
reducing overall complexity.

To better capture both local and global contextual information, researchers have increasingly combined
CNNs with transformers to enhance performance in multi-organ medical image segmentation. Chen et al.
(2021) introduced TransUNet, which integrates CNN and ViT within the encoder to leverage the strengths
of both architectures. Similarly, Wang et al. (2021) incorporated a mixed transformer module into the U-
Net framework to account for dataset relevance. Enferadi et al. (2020) employed a visual attention-based
transformer as the encoder and a CNN as the decoder, enabling direct image input into the transformer. Lin
and Guo (2021) proposed a dual-scale encoding strategy based on the Swin Transformer to extract both
coarse- and fine-grained features across different semantic levels. Peng et al. (2018) further combined the
transformer with recurrent neural networks (RNNSs) to ensure more efficient training.

In contrast to these approaches, the present study replaces the Multi-Head Self-Attention (MSA)
mechanism in VIiT with visual attention. While MSA primarily captures spatial correlations, it often
overlooks channel-wise dependencies. Visual attention, with its large kernel design, adapts effectively to
both spatial and channel dimensions. Furthermore, during up-sampling, the decoder tends to lose critical
information and reduce resolution. To mitigate this, we propose incorporating a residual convolutional
attention module after up-sampling, along with a three-layer multi-feature convolution (MFC) following
encoder—decoder feature fusion. This design enhances segmentation clarity and accuracy by preserving
vital information across dimensions.

3. Materials and Methods

This section describes the datasets used, preprocessing procedures, architectural design of the proposed
model, baseline comparisons, training protocols, and evaluation metrics. The methodology was designed
to ensure that the lightweight hybrid U-Net with Vision Transformer (ViT) blocks could be rigorously
evaluated for segmentation performance, computational efficiency, and cross-domain adaptability across
different imaging modalities.

3.1 Dataset
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To evaluate the proposed hybrid model across diverse medical domains, two publicly available benchmark
datasets were selected: the Automated Cardiac Diagnosis Challenge (ACDC) dataset for cardiac MRI
segmentation and the Breast Ultrasound Images (BUSI) dataset for breast lesion segmentation. These
datasets were chosen because they represent two fundamentally different imaging modalities—MRI and
ultrasound—which differ in imaging physics, anatomical targets, and noise characteristics. This diversity
provides a suitable testbed for assessing both segmentation accuracy and cross-domain robustness.

The ACDC dataset consists of cine cardiac magnetic resonance images collected from 100 patients. Each
sample includes short-axis views of the heart covering end-diastolic and end-systolic phases, with manual
expert annotations for three anatomical structures: the left ventricle (LV), right ventricle (RV), and
myocardium (Myo). The dataset was divided into 70 patients for training, 10 for validation, and 20 for
independent testing. This split follows the established protocol in previous studies to ensure consistency
and comparability with prior work.

The BUSI dataset contains approximately 780 breast ultrasound images annotated with binary
segmentation masks distinguishing benign and malignant lesions. Ultrasound data are inherently noisier
than MRI due to speckle patterns and operator dependence, making segmentation particularly challenging.
The dataset was split into 70% training, 10% validation, and 20% testing. The inclusion of this dataset
allowed the study to evaluate whether the proposed model could generalize effectively from a structured
modality such as MRI to a less structured one like ultrasound.

The choice of these datasets reflects an emphasis on diversity: cardiac MRI requires accurate delineation
of well-defined anatomical boundaries, whereas breast ultrasound demands robustness to noisy and
heterogeneous lesion appearances. Combining both datasets simulates real-world clinical scenarios in
which a single segmentation framework may need to handle multiple imaging modalities.

3.2 Preprocessing

Medical imaging datasets vary widely in acquisition settings, image resolution, and contrast properties.
Preprocessing was therefore performed to ensure consistency across samples and to prepare the data for
neural network training.

For the ACDC dataset, all MRI images were normalized to zero mean and unit variance to account for
intensity variations across scans. Each image was center-cropped to a fixed resolution of 256 x 256 pixels,
maintaining a balance between preserving anatomical detail and reducing computational cost. Additionally,
resampling was applied to achieve uniform voxel spacing across patients, ensuring consistent spatial
dimensions before segmentation training.

For the BUSI dataset, preprocessing focused on standardizing input resolution and enhancing contrast.
Images were resized to 256 x 256 pixels to match the ACDC preprocessing setup. Histogram equalization
was applied to improve contrast, making lesions more distinguishable from surrounding tissue. Finally,
normalization was applied to bring pixel intensities to a common scale across all images.

To enhance model generalization, data augmentation was applied during training. Augmentations included
random rotations of +15°, horizontal and vertical flips, and brightness shifts. These transformations
simulated real-world variability in imaging acquisition and reduced overfitting by exposing the model to a
wider range of visual patterns. Augmentations were applied on the fly during training to maximize diversity
in each batch.

3.3 Model Architecture

The core of this study is the proposed lightweight hybrid model, which integrates a U-Net backbone with
Vision Transformer (ViT) blocks. The design philosophy was to retain the strong localization ability of
convolutional networks while incorporating the global context modeling capacity of transformers—all
within a computationally efficient framework suitable for deployment on resource-limited platforms such
as Google Colab.

The U-Net backbone follows a standard encoder—decoder structure with four downsampling and
upsampling stages. The encoder progressively reduces spatial resolution while increasing feature
dimensionality, enabling hierarchical feature extraction. The decoder reconstructs segmentation maps by
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progressively upsampling and integrating features via skip connections from the encoder, preserving fine-
grained spatial details alongside high-level semantic information.
To overcome CNNs’ limitation in modeling long-range dependencies, lightweight VIiT blocks were
introduced at the bottleneck of the U-Net. Each block consists of three key components:
1. Patch embedding: Feature maps are divided into small patches, which are linearly projected into an
embedding space.
2. Transformer encoder: A reduced-depth transformer encoder with four self-attention heads and a
compact feed-forward dimension enables global feature interactions at lower computational cost.
3. Feature reconstruction: The transformed embeddings are projected back into spatial feature maps
for seamless integration with the U-Net decoder.
Inspired by MobileViT, these blocks were designed to minimize parameter count and memory usage while
maintaining strong non-local feature learning capability.
To further enhance efficiency, depthwise separable convolutions were employed in the double convolution
blocks, significantly reducing trainable parameters without sacrificing representational power. As a result,
the model contained approximately 5 million parameters, substantially fewer than transformer-heavy
architectures such as TransUNet.
3.4 Baselines

For comparative analysis, three baseline models were implemented:

e U-Net: The original encoder—decoder architecture served as the foundational baseline,
demonstrating the effectiveness of the proposed modifications.

o Attention U-Net: This model incorporates attention gates into the skip connections, allowing the
network to emphasize relevant regions during decoding and providing an improved CNN baseline
with better feature selection.

o TransUNet: Representing a state-of-the-art transformer-based approach, TransUNet integrates a
CNN encoder with a Vision Transformer encoder. Although highly effective in segmentation, it is
computationally demanding and requires substantial GPU memory, making it a suitable benchmark
for evaluating the efficiency of the proposed lightweight design.

These baselines represent the spectrum of segmentation approaches: pure CNN-based (U-Net), CNN with
attention mechanisms (Attention U-Net), and CNN-Transformer hybrids (TransUNet).
3.5 Training Protocol

Training was carefully designed to optimize model performance while ensuring fair comparisons across all
architectures. Different loss functions were employed depending on the dataset.

For the BUSI dataset (binary segmentation), the loss function combined Dice loss and binary cross-entropy
(BCE). Dice loss ensured overlap accuracy, while BCE penalized pixel-wise misclassifications.
For the ACDC dataset (multi-class segmentation), the loss function combined Dice loss with categorical
cross-entropy, accommodating multiple anatomical classes.

The Adam optimizer was used with a learning rate of 1 x 10™%, determined experimentally for stability
and convergence. A batch size of 8 was selected as a balance between computational feasibility on Google
Colab and gradient stability. Training proceeded for a maximum of 100 epochs with early stopping
(patience = 10 epochs) to prevent overfitting.

All training was conducted on Google Colab, utilizing an NVIDIA Tesla T4 GPU (16 GB VRAM). This
setup was intentionally chosen to reflect constraints of resource-limited environments. GPU memory usage,
training time, and parameter counts were recorded to assess computational efficiency.

3.6 Evaluation Metrics

. The proposed model and baselines were evaluated across three dimensions: segmentation quality,

computational efficiency, and cross-domain generalization.
1. Segmentation quality: Evaluated using the Dice coefficient (measuring overlap between predicted
and ground truth masks) and the 95th percentile Hausdorff Distance (HD95) (measuring boundary
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accuracy). Together, these metrics provide robust assessment of volumetric and boundary
performance.

2. Efficiency: Measured using the total number of trainable parameters, peak GPU memory
consumption, and average training time per epoch, quantifying the computational footprint of each
architecture.

3. Cross-domain generalization: Tested by training on one dataset (e.g., ACDC) and fine-tuning on
the other (e.g., BUSI). The resulting performance was compared to models trained directly on the
target dataset, providing insight into adaptability across imaging modalities and practical
deployment readiness in heterogeneous clinical environments

4. Results
4.1 Segmentation Performance

The performance of the proposed hybrid model was compared with U-Net, Attention U-Net, and
TransUNet across both datasets (see Table 1). On the ACDC cardiac MRI dataset, the proposed hybrid
achieved a Dice coefficient of 0.92 with a Hausdorff-95 distance (HD95) of 2.2 mm. This performance was
comparable to TransUNet, which slightly outperformed it with a Dice of 0.93 and HD95 of 2.1 mm, while
surpassing both U-Net (Dice 0.90, HD95 2.8 mm) and Attention U-Net (Dice 0.91, HD95 2.4 mm).

On the BUSI breast ultrasound dataset, the proposed model achieved a Dice score of 0.85 and HD95 of 3.7
mm, again showing results close to TransUNet (Dice 0.86, HD95 3.5 mm) and outperforming U-Net (Dice
0.82, HD95 4.5 mm) and Attention U-Net (Dice 0.83, HD95 4.0 mm).

Table 1:Segmentation Performance

Model ACDC Dice | ACDC HD95 (mm) | BUSI Dice | BUSI HD95 (mm)
U-Net 0.90 2.8 0.82 4.5
Attention U-Net | 0.91 2.4 0.83 4.0
TransUNet 0.93 2.1 0.86 3.5
Proposed Hybrid | 0.92 2.2 0.85 3.7

These results indicate that the lightweight hybrid architecture maintains segmentation accuracy comparable
to state-of-the-art transformer-based approaches while offering improved computational efficiency
(discussed below).

4.2 Efficiency Metrics

Efficiency was evaluated based on parameter count, GPU memory consumption, and training time. The
proposed hybrid model contained approximately 5 million parameters, the lowest among all tested
architectures. In comparison, U-Net contained approximately 7 million, Attention U-Net 8 million, and
TransUNet 12 million parameters.

Regarding memory consumption on Google Colab’s NVIDIA Tesla T4 GPU, the proposed model required
4.5 GB of peak imaging domains was evaluated by training on one dataset and fine-tuning on the other.
When trained on the ACDC dataset and fine-tuned on BUSI for 20 epochs, U-Net exhibited a performance
drop to a Dice score of 0.78 (—4%), while TransUNet dropped to 0.80 (—6%). The proposed hybrid
demonstrated superior robustness, with only a modest drop to 0.82 (—3%).

A similar trend was observed when training on BUSI and fine-tuning on ACDC, where VRAM, compared
to 5.2 GB for U-Net, 5.6 GB for Attention U-Net, and 8.0 GB for TransUNet. Training time per epoch was
also lowest for the proposed model (~55 seconds), compared to ~60 seconds for U-Net, ~70 seconds for
Attention U-Net, and ~100 seconds for TransUNet. These findings confirm that the proposed design
achieves substantial computational savings, making it suitable for resource-limited environments.

4.3 Cross-Domain Generalization

Model generalization across
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the proposed model again demonstrated smaller degradation compared with the baselines. These results
highlight that the proposed hybrid model not only matches the segmentation accuracy of heavier
transformer-based architectures but also offers greater efficiency and stronger cross-domain generalization.
4.4 Discussion of Findings

The proposed lightweight hybrid model achieves segmentation accuracy nearly equivalent to TransUNet
while delivering substantial reductions in parameter count, VRAM usage, and training time—making it
feasible for deployment on Google Colab and other low-resource platforms. Notably, it maintains better
cross-domain robustness, suggesting that the ViT blocks effectively capture modality-agnostic features that
generalize across imaging types.

Although TransUNet maintains a slight edge in absolute accuracy, its high computational cost limits
practical utility. The findings validate the proposed trade-off between performance and efficiency,
confirming that the model remains compact yet powerful enough for real-world clinical and research
environments.

4.5 Limitations and Future Work

While the results are promising, several limitations should be acknowledged. A primary limitation is that
the experimental validation was conducted only on two 2D datasets. This may not fully capture model
performance in broader clinical contexts involving 3D volumetric data (e.g., CT or MRI scans) or other
imaging modalities such as mammography. Expanding validation to include datasets like CBIS-DDSM
(mammography) or BraTS (3D brain MRI) would strengthen claims of cross-domain robustness and
generalizability.

Additionally, hyperparameter tuning—particularly for transformer depth and attention heads—was limited
by computational constraints. A more extensive optimization search could potentially improve performance
further. There is also a risk of overfitting due to the model’s capacity, although this was mitigated through
data augmentation and early stopping.

Future work will address these limitations by incorporating more diverse datasets, exploring 3D
architectural extensions, and employing neural architecture search (NAS) for further optimization.
Incorporating explainability techniques such as Grad-CAM and attention visualization will also enhance
interpretability and support clinical adoption.

5. Conclusion

This study presents a Lightweight U-Net with Vision Transformer Blocks, achieving competitive
accuracy in both cardiac MRI and breast ultrasound segmentation tasks with significantly reduced
computational cost. Its strong cross-domain performance and resource-efficient footprint make it a
promising candidate for deployment in low-resource clinical settings.
Future work will focus on expanding the dataset scope, exploring 3D model extensions, and integrating
explainability modules to promote transparency and clinical usability.
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